Home
Class 11
MATHS
a=log5 3+log7 5+log9 7...

`a=log_5 3+log_7 5+log_9 7`

A

`ain[3//2,oo)`

B

`ain[(1)/(2^(1//3),oo)`

C

`ain[(3)/(2^(1//3),oo)`

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( a = \log_5 3 + \log_7 5 + \log_9 7 \) and find the interval of \( a \), we can use the Arithmetic Mean - Geometric Mean (AM-GM) inequality. Here’s a step-by-step solution: ### Step 1: Apply the AM-GM Inequality According to the AM-GM inequality for three positive numbers \( x_1, x_2, x_3 \): \[ \frac{x_1 + x_2 + x_3}{3} \geq \sqrt[3]{x_1 x_2 x_3} \] In our case, let: \[ x_1 = \log_5 3, \quad x_2 = \log_7 5, \quad x_3 = \log_9 7 \] Thus, we have: \[ \frac{\log_5 3 + \log_7 5 + \log_9 7}{3} \geq \sqrt[3]{\log_5 3 \cdot \log_7 5 \cdot \log_9 7} \] This implies: \[ \frac{a}{3} \geq \sqrt[3]{\log_5 3 \cdot \log_7 5 \cdot \log_9 7} \] ### Step 2: Rewrite the Logarithms Using the change of base formula, we can rewrite the logarithms: \[ \log_5 3 = \frac{\log 3}{\log 5}, \quad \log_7 5 = \frac{\log 5}{\log 7}, \quad \log_9 7 = \frac{\log 7}{\log 9} \] Thus, we can express \( a \) as: \[ a \geq 3 \sqrt[3]{\frac{\log 3}{\log 5} \cdot \frac{\log 5}{\log 7} \cdot \frac{\log 7}{\log 9}} \] ### Step 3: Simplify the Expression Notice that the \( \log 5 \) and \( \log 7 \) terms will cancel out: \[ \log 5 \text{ cancels with } \log 5 \text{ and } \log 7 \text{ cancels with } \log 7 \] Thus, we have: \[ a \geq 3 \sqrt[3]{\frac{\log 3}{\log 9}} = 3 \sqrt[3]{\frac{\log 3}{\log 3^2}} = 3 \sqrt[3]{\frac{\log 3}{2 \log 3}} = 3 \sqrt[3]{\frac{1}{2}} = \frac{3}{2^{1/3}} \] ### Step 4: Conclusion Therefore, we conclude that: \[ a \geq \frac{3}{2^{1/3}} \] This means that the interval of \( a \) is: \[ a \in \left[\frac{3}{2^{1/3}}, \infty\right) \] ### Final Answer The interval of \( a \) is: \[ \boxed{\left[\frac{3}{2^{1/3}}, \infty\right)} \]

To solve the problem \( a = \log_5 3 + \log_7 5 + \log_9 7 \) and find the interval of \( a \), we can use the Arithmetic Mean - Geometric Mean (AM-GM) inequality. Here’s a step-by-step solution: ### Step 1: Apply the AM-GM Inequality According to the AM-GM inequality for three positive numbers \( x_1, x_2, x_3 \): \[ \frac{x_1 + x_2 + x_3}{3} \geq \sqrt[3]{x_1 x_2 x_3} \] In our case, let: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 1 - Solved Mcq|54 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

The value of (log_5 9*log_7 5*log_3 7)/(log_3 sqrt(6))+1/(log_4 sqrt(6)) is co-prime with

log10 - log5

Arrange log_(2) 5, log_(0.5) 5, log_(7) 5, log_(3) 5 in decreasing order.

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Prove that: (log_9 11)/(log_5 3) = (log_3 11)/(log_sqrt(5) 3).

Show that log_(3) 9+ log_(3) 3= log_(5) 125

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

If 6/5 a^A-3^B=9^C where A=log_a x.log_(10) alog_a 5,B=log_(10) (x/10) and C=log_(100) x+log_4 2 . Find x

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)