Home
Class 11
MATHS
If x+y=a, then the greatest value of x^(...

If `x+y=a`, then the greatest value of `x^(2)y^(3)` is

A

`(108a^(5))/(3125)`

B

`(108a^(5))/(625)`

C

`(54a^(5))/(3125)`

D

`(108a^(4))/(3125)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of \( x^2 y^3 \) given that \( x + y = a \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Express the variables**: We know that \( x + y = a \). We want to maximize \( x^2 y^3 \). 2. **Apply AM-GM Inequality**: We can apply the AM-GM inequality to the terms we have. To do this, we can rewrite \( x^2 \) as \( x + x \) (two times) and \( y^3 \) as \( y + y + y \) (three times). Thus, we can express our terms as: \[ x + x + y + y + y \] 3. **Calculate the AM**: The Arithmetic Mean of these five terms is: \[ \frac{x + x + y + y + y}{5} = \frac{2x + 3y}{5} \] 4. **Use the constraint**: We know that \( x + y = a \). We can express \( y \) in terms of \( x \): \[ y = a - x \] Substituting this into the AM gives: \[ \frac{2x + 3(a - x)}{5} = \frac{2x + 3a - 3x}{5} = \frac{3a - x}{5} \] 5. **Apply AM-GM**: According to the AM-GM inequality: \[ \frac{2x + 3y}{5} \geq \sqrt[5]{x^2 y^3} \] Therefore, we have: \[ \frac{3a - x}{5} \geq \sqrt[5]{x^2 y^3} \] 6. **Raise both sides to the power of 5**: This gives us: \[ \left(\frac{3a - x}{5}\right)^5 \geq x^2 y^3 \] 7. **Find maximum value**: To find the maximum value of \( x^2 y^3 \), we need to find the optimal values of \( x \) and \( y \) that satisfy \( x + y = a \). From the AM-GM equality condition, we know that equality holds when all terms are equal: \[ x = x = y = y = y \] This implies: \[ 2x = 3y \implies x = \frac{3}{2}y \] 8. **Substituting back**: Substitute \( y = a - x \) into \( x = \frac{3}{2}y \): \[ x = \frac{3}{2}(a - x) \] Solving for \( x \): \[ 2x = 3a - 3x \implies 5x = 3a \implies x = \frac{3a}{5} \] Then, substituting \( x \) back to find \( y \): \[ y = a - x = a - \frac{3a}{5} = \frac{2a}{5} \] 9. **Calculate \( x^2 y^3 \)**: Now substituting \( x \) and \( y \) back into \( x^2 y^3 \): \[ x^2 y^3 = \left(\frac{3a}{5}\right)^2 \left(\frac{2a}{5}\right)^3 = \frac{9a^2}{25} \cdot \frac{8a^3}{125} = \frac{72a^5}{3125} \] 10. **Final Result**: Therefore, the greatest value of \( x^2 y^3 \) is: \[ \frac{72a^5}{3125} \]

To find the greatest value of \( x^2 y^3 \) given that \( x + y = a \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Express the variables**: We know that \( x + y = a \). We want to maximize \( x^2 y^3 \). 2. **Apply AM-GM Inequality**: We can apply the AM-GM inequality to the terms we have. To do this, we can rewrite \( x^2 \) as \( x + x \) (two times) and \( y^3 \) as \( y + y + y \) (three times). Thus, we can express our terms as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 1 - Solved Mcq|54 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If x +y =a and x^(2) +y^(2)=b , then the value of (x^(3)+y^(3)) , is

If |(x, x+y, x+y+z),(2x,3x+2y, 4x+3y+2z),(3x,6x+3y, 10x+6y+3z)|=64 then the real value of x is

if x/y + y/x = -1 ( x, y != 0 ) , then the value of x^3 -y^3 is

If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0, then the value of xysqrt(y^(2)-x^(2)), is

If y z+z x+x y=12 , and x , y , z are positive values, find the greatest value of x y zdot

If 2x-3y=7 and y=3 , then what is the value of x?

If y z+z x+x y=12 ,w h e r ex ,y ,z are positive values, find the greatest value of x y zdot

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

Find the least and greatest value of f(x,y) = x^(2) + y ^(2) - xy where x and y are connected by the relation x^(2)+4y^(2) = 4 .