Home
Class 11
MATHS
If x=log(2^(2))2+log(2^(3))2^(2)+log(2^(...

If `x=log_(2^(2))2+log_(2^(3))2^(2)+log_(2^(4))2^(3)+...+log_(2^(n+1))2^(n),` then

A

`xge((1)/(n+1))^(1//n)`

B

`xgen((1)/(n+1))^(1//n)`

C

`xge((n)/(n+1))^(1//n)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ x = \log_{2^2} 2 + \log_{2^3} 2^2 + \log_{2^4} 2^3 + \ldots + \log_{2^{n+1}} 2^n \] ### Step 1: Apply the change of base formula for logarithms Using the property of logarithms, we can express each term in the sum as follows: \[ \log_{a^b} c^d = \frac{d}{b} \log_a c \] So, we can rewrite each term: \[ \log_{2^2} 2 = \frac{1}{2} \log_2 2 = \frac{1}{2} \] \[ \log_{2^3} 2^2 = \frac{2}{3} \log_2 2 = \frac{2}{3} \] \[ \log_{2^4} 2^3 = \frac{3}{4} \log_2 2 = \frac{3}{4} \] \[ \vdots \] \[ \log_{2^{n+1}} 2^n = \frac{n}{n+1} \log_2 2 = \frac{n}{n+1} \] Thus, we can express \(x\) as: \[ x = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \ldots + \frac{n}{n+1} \] ### Step 2: Rewrite the expression for \(x\) Now we can write \(x\) in a more compact form: \[ x = \sum_{k=1}^{n} \frac{k}{k+1} \] ### Step 3: Simplify the sum We can simplify each term \(\frac{k}{k+1}\): \[ \frac{k}{k+1} = 1 - \frac{1}{k+1} \] So, we have: \[ x = \sum_{k=1}^{n} \left( 1 - \frac{1}{k+1} \right) = \sum_{k=1}^{n} 1 - \sum_{k=1}^{n} \frac{1}{k+1} \] Calculating the first sum: \[ \sum_{k=1}^{n} 1 = n \] And the second sum: \[ \sum_{k=1}^{n} \frac{1}{k+1} = \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n+1} \] ### Step 4: Combine the results Thus, we can express \(x\) as: \[ x = n - \left( \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n+1} \right) \] ### Step 5: Apply the AM-GM inequality Now we can apply the AM-GM inequality to the series: \[ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n}{n+1} \] The arithmetic mean (AM) of these terms is: \[ \text{AM} = \frac{\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \ldots + \frac{n}{n+1}}{n} \] And the geometric mean (GM) is: \[ \text{GM} = \left( \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n}{n+1} \right)^{\frac{1}{n}} \] ### Step 6: Conclude the inequality Using AM-GM, we have: \[ \text{AM} \geq \text{GM} \] This leads us to: \[ \frac{x}{n} \geq \left( \frac{1}{2} \cdot \frac{2}{3} \cdots \frac{n}{n+1} \right)^{\frac{1}{n}} \] Thus, we can conclude that: \[ x \geq n \cdot \left( \frac{1}{n+1} \right)^{\frac{1}{n}} \] ### Final Result Therefore, the final result is: \[ x \geq \frac{n}{n+1}^{\frac{1}{n}} \]
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|1 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

Solve log_(2)((4)/(x+3))>log_(2)(2-x)

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .

Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .

Solve : (3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3) .

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

{:(Column -I,Column -II),((A)"if" 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)"then 2x equals",(P)1),((B)"The number of solutions of" log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0 is,(Q)2),((C)"The number of values of x such that the middle term of",(R)3),(log_(2)2 log_(3)(2^(x)-5)log_(3)(2^(x)-(7)/(2))"is the average of the other two is",),((D)"if" alphabeta "are the roots of the equation",(S)4),(x^(2)-(3+2^(sqrt(log_(2)3)-3sqrt(log_(3)2)))x-2(3log_(3)^(2)-2^(log_(2)^(3)))=0,),("then" 2(alpha+beta)-alpha beta"equals",):}

If x_(n)gt1 for all n in N , then the minimum value of the expression log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n) is

If 3^(x) = 4^(x-1) , then x = a. (2 log_(3) 2)/(2log_(3) 2-1) b. 2/(2-log_(2)3) c. 1/(1-log_(4)3) d. (2 log_(2)3)/(2 log_(2) 3-1)

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section I - Mcqs
  1. If a,b,c,d in R^(+)-{1}, then the minimum value of log(d) a+ log(b)+lo...

    Text Solution

    |

  2. the minimum value of 4^(x)+4^(1-x),x in R is

    Text Solution

    |

  3. If x=log(2^(2))2+log(2^(3))2^(2)+log(2^(4))2^(3)+...+log(2^(n+1))2^(n)...

    Text Solution

    |

  4. The least value of 5^(sinx-1)+5^(-sinx-1), is

    Text Solution

    |

  5. If a(1),a(2),a(3) be any positive real numbers, then which of the foll...

    Text Solution

    |

  6. For theta>pi/3, the value of f(theta)=sec^2theta+cos^2theta always lie...

    Text Solution

    |

  7. If a and b are two different positive real numbers then which of the f...

    Text Solution

    |

  8. If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3)...

    Text Solution

    |

  9. If a, b, c are positive real numbers such that a+b+c=2 then, which one...

    Text Solution

    |

  10. If a, b, c are positive real numbers such that a+b+c=p then, which of ...

    Text Solution

    |

  11. Evaluate int(x^(3))/((x-1)(x-2))dx

    Text Solution

    |

  12. If roots of the equation x^(4)-8x^(3)+bx^(2)+cx+16=0 are positive, the...

    Text Solution

    |

  13. If a,b,c are distinct positive real numbers, then

    Text Solution

    |

  14. 2^(sin^(2)x)+2^(cos^(2)x) is

    Text Solution

    |

  15. If xyz=abc, then the least value of bcx+cay+abz, is

    Text Solution

    |

  16. The number of orded 4-tuples (x,y,z,w) where x,y,z,w in[0,10] which sa...

    Text Solution

    |

  17. The range of ab if |a|le1" and "a+b=1,(a, b in R), is

    Text Solution

    |

  18. If A = x^2+1/x^2 , B = x-1/x then minimum value of A/B is

    Text Solution

    |

  19. The least perimeter of a cyclic quadrilateral of given area A square u...

    Text Solution

    |

  20. A stick of length 20 units is to be divided into n parts so that the p...

    Text Solution

    |