Home
Class 11
MATHS
The numbers of integral solutions of the...

The numbers of integral solutions of the equations
`y^(2)(5x^(2)+1)=25(2x^(2)+13)" where "x, y inI`, is

A

2

B

4

C

8

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y^2(5x^2 + 1) = 25(2x^2 + 13) \) for integral solutions where \( x, y \in \mathbb{Z} \), we can follow these steps: ### Step 1: Rearranging the Equation Start by rewriting the equation: \[ y^2(5x^2 + 1) = 25(2x^2 + 13) \] This can be rearranged as: \[ y^2(5x^2 + 1) - 25(2x^2 + 13) = 0 \] ### Step 2: Isolating \( y^2 \) We can express \( y^2 \) in terms of \( x \): \[ y^2 = \frac{25(2x^2 + 13)}{5x^2 + 1} \] ### Step 3: Finding Conditions for \( y^2 \) to be an Integer For \( y^2 \) to be an integer, the right-hand side must be an integer. Therefore, \( 5x^2 + 1 \) must divide \( 25(2x^2 + 13) \). ### Step 4: Simplifying the Division We can simplify the expression: \[ \frac{25(2x^2 + 13)}{5x^2 + 1} \] Let’s perform polynomial long division or factorization to analyze the divisibility. ### Step 5: Finding Integer Solutions We can check specific integer values for \( x \) to find corresponding \( y \). 1. **For \( x = 0 \)**: \[ y^2 = \frac{25(2(0)^2 + 13)}{5(0)^2 + 1} = \frac{25 \cdot 13}{1} = 325 \quad \text{(not a perfect square)} \] 2. **For \( x = 1 \)**: \[ y^2 = \frac{25(2(1)^2 + 13)}{5(1)^2 + 1} = \frac{25(2 + 13)}{5 + 1} = \frac{25 \cdot 15}{6} = 62.5 \quad \text{(not an integer)} \] 3. **For \( x = 2 \)**: \[ y^2 = \frac{25(2(2)^2 + 13)}{5(2)^2 + 1} = \frac{25(8 + 13)}{20 + 1} = \frac{25 \cdot 21}{21} = 25 \quad \Rightarrow \quad y = \pm 5 \] 4. **For \( x = -2 \)** (since \( y^2 \) is symmetric): \[ y^2 = \frac{25(2(-2)^2 + 13)}{5(-2)^2 + 1} = 25 \quad \Rightarrow \quad y = \pm 5 \] 5. **For \( x = 3 \)**: \[ y^2 = \frac{25(2(3)^2 + 13)}{5(3)^2 + 1} = \frac{25(18 + 13)}{45 + 1} = \frac{25 \cdot 31}{46} \quad \text{(not an integer)} \] 6. **For \( x = -3 \)**: \[ y^2 = \frac{25(2(-3)^2 + 13)}{5(-3)^2 + 1} = \frac{25(18 + 13)}{45 + 1} = \frac{25 \cdot 31}{46} \quad \text{(not an integer)} \] ### Step 6: Summary of Solutions From the calculations, we find the valid pairs: - \( (2, 5) \) - \( (2, -5) \) - \( (-2, 5) \) - \( (-2, -5) \) Thus, the total number of integral solutions is **4**. ### Final Answer The number of integral solutions of the equation is **4**.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|1 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation |x-1|-|2x-5|=2x

The number of integral solutions of 2(x+2)gt x^(2)+1 , is

The number of integral solutions of (x+2)/(x^2+1)>1/2 is

The number of positive integral solutions (x,y) of the equation 2xy-4x^(2)+12x-5y=11, is

The number of non- negative integral solutions of the equation x + y + z = 5 is :

Number of positive integral solution of the equation |x^(2)-3x-3| gt |x^(2)+7x-13| is/are

x=5 and y=2 is a solution of the linear equation

Let N be the number of integral solution of the equation x+y+z+w=15" where " x ge 0, y gt 5, z ge 2 and w ge 1 . Find the unit digit of N.

The number of positive integral solutions of the equation |(x^3+1,x^2y,x^2z),(xy^2,y^3+1,y^2z),(xz^2,z^2y,z^3+1)|=11 is

The general solution of the equation tan^(2)(x + y) + cot^(2) ( x+ y) = 1 - 2x - x^(2) lie on the line is :

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section I - Mcqs
  1. The range of ab if |a|le1" and "a+b=1,(a, b in R), is

    Text Solution

    |

  2. If A = x^2+1/x^2 , B = x-1/x then minimum value of A/B is

    Text Solution

    |

  3. The least perimeter of a cyclic quadrilateral of given area A square u...

    Text Solution

    |

  4. A stick of length 20 units is to be divided into n parts so that the p...

    Text Solution

    |

  5. If x. y, z are positive real numbers such that x^2+y^2+z^2=27, then ...

    Text Solution

    |

  6. If x(1),x(2),...,x(n) are real numbers, then the largest value of the ...

    Text Solution

    |

  7. The minimum value of the sum of the lengths of diagonals of a cyclic q...

    Text Solution

    |

  8. The minimum value of |sinx+cosx+tanx+secx+"cosec"x+cotx|, is

    Text Solution

    |

  9. The expression (a+b+c)(b+c-a)(c+a-b)(a+b-c) lekb^(2)c^(2) then k can...

    Text Solution

    |

  10. If n is even and nge4,x(1),x(2),...,x(n)ge0 and x(1)+x(2)+...+x(n)=1,...

    Text Solution

    |

  11. Find the least value of n such that (n-2)x^2+x+n+4>0,AAx in R ,w h e ...

    Text Solution

    |

  12. The number of solution (s) of equation sin sin^(-1)([x])+cos^(-1)cosx=...

    Text Solution

    |

  13. Number of solutions of |(1)/(|x|-1)|=x+sinx, is

    Text Solution

    |

  14. The solution set of equation (x+2)^(2)+[x-2]^(2)=(x-2)^(2)+[x+2]^(2)...

    Text Solution

    |

  15. The number of pairs of positive integers (x,y) where x and y are prime...

    Text Solution

    |

  16. The number of solution of the equation 16(x^(2)+1)+pi^(2)=|tanx|+8pi...

    Text Solution

    |

  17. The set of values of 'a' for which ax^(2)-(4-2a)x-8lt0 for exactly thr...

    Text Solution

    |

  18. The number of positive integral solutions (x,y) of the equation 2xy-4x...

    Text Solution

    |

  19. Number of integers, which satisfy the inequality ((16)^(1/ x))/((2^(x...

    Text Solution

    |

  20. The numbers of integral solutions of the equations y^(2)(5x^(2)+1)=2...

    Text Solution

    |