Home
Class 11
MATHS
Statement - 1 sum(r=0)^(n) (r + 1) ""^(...

Statement - 1 ` sum_(r=0)^(n) (r + 1) ""^(n)C_(r) = (n+2)*2^(n-1)`
Statement-2 ` sum_(r=0)^(n) (r +1)""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)` .

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

We have ,

` sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = sum_(r =0)^(n) r. ""^(n)C_(r) x^(r)+ sum_(r =0)^(n) r. ""^(n)C_(r) x^(r)`
`rArr sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = sum_(r =1 )^(n) rxx(n)/(r)xx ""^(n-1)C_(r-1) x^(r-1)xxx+ sum_(r =0)^(n) ""^(n)C_(r) x^(r)`
`rArr sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) =nx sum_(r =1)^(n) ""^(n-1)C_(r-1) x^(r-1)xxx+ sum_(r =0)^(n) ""^(n)C_(r) x^(r)`
`rArr sum_(r=0)^(n) (r+1)""^(n)C_(r) x^(r) = nx (1 + x)^(n-1) + 2 ^(n) (n +2)2^(n-1)`
So, statement -1 is also ture ans statement-2 is a correct
expanation for statement-1 .
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :