Home
Class 11
MATHS
Statement-1 : sum(r=0)^(n) r^(2) ""^(n...

Statement-1 : ` sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1)`
Statement-2: `sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1)` .

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to verify the two statements provided and show that they are true. ### Step 1: Analyze Statement 2 We start with Statement 2: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1)2^{n-2} + n2^{n-1} \] We can express \( r^2 \) in terms of \( r \) and \( r(r-1) \): \[ r^2 = r(r-1) + r \] Thus, we can rewrite the summation: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} = \sum_{r=0}^{n} r(r-1) \binom{n}{r} + \sum_{r=0}^{n} r \binom{n}{r} \] ### Step 2: Simplify the First Summation The first summation can be simplified using the identity: \[ r(r-1) \binom{n}{r} = n(n-1) \binom{n-2}{r-2} \] Thus: \[ \sum_{r=0}^{n} r(r-1) \binom{n}{r} = n(n-1) \sum_{r=2}^{n} \binom{n-2}{r-2} = n(n-1) 2^{n-2} \] ### Step 3: Simplify the Second Summation The second summation can be simplified using the identity: \[ r \binom{n}{r} = n \binom{n-1}{r-1} \] Thus: \[ \sum_{r=0}^{n} r \binom{n}{r} = n \sum_{r=1}^{n} \binom{n-1}{r-1} = n 2^{n-1} \] ### Step 4: Combine the Results Now we combine both results: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1)2^{n-2} + n2^{n-1} \] This confirms that Statement 2 is true. ### Step 5: Analyze Statement 1 Now we check Statement 1: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} x^r = n(n-1)x^2(1+x)^{n-2} + nx(1+x)^{n-1} \] Using the same approach as in Statement 2, we can rewrite \( r^2 \) and analyze the summation: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} x^r = \sum_{r=0}^{n} r(r-1) \binom{n}{r} x^r + \sum_{r=0}^{n} r \binom{n}{r} x^r \] ### Step 6: Apply the Identities Using the identities we derived earlier: 1. For \( r(r-1) \): \[ \sum_{r=0}^{n} r(r-1) \binom{n}{r} x^r = n(n-1)x^2(1+x)^{n-2} \] 2. For \( r \): \[ \sum_{r=0}^{n} r \binom{n}{r} x^r = nx(1+x)^{n-1} \] ### Step 7: Combine the Results for Statement 1 Combining both results gives: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} x^r = n(n-1)x^2(1+x)^{n-2} + nx(1+x)^{n-1} \] Thus, Statement 1 is also true. ### Conclusion Both statements are true, and Statement 2 is not a correct explanation for Statement 1.

To solve the given problem, we need to verify the two statements provided and show that they are true. ### Step 1: Analyze Statement 2 We start with Statement 2: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1)2^{n-2} + n2^{n-1} \] We can express \( r^2 \) in terms of \( r \) and \( r(r-1) \): ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .