Home
Class 11
MATHS
Statement -2: sum(r=0)^(n) (-1)^( r) ("...

Statement -2: `sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1)`
Statement-2: ` sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
a

We have,
`sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1)x^(r)`
` = - (1)/(x(x +1)) sum_(r=0)^(n) (-1)^(r+1) (n+1)/(r+1) ""^(n)C_(r) x^(r+1)`
`= - (1)/(x (n+1)) {( 1 - x)^(n +1) -1} = (1)/((n+1)x) {1 - (1 - x)^(n +1)}`
` = - (1)/(x(n+1)) {(1 -x)^(n+1) -1} = (1)/((n+1)x) {1 - ( 1 - x)^(n+1)}`
So, statement-2 is true
Replacing x by 1 in statement-2, we get
`sum_(r=0)^(n) (-1)^^(r) (""^(n)C_(r))/(r+1) = (1)/(n+1)`
So, statement-1 is also true and stetement-2 is a correct
explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

sum_(r=0)^n (-1)^r .^nC_r (1+rln10)/(1+ln10^n)^r