Home
Class 11
MATHS
For any n in N, let C(r) stand for ""^(n...

For any n `in` N, let `C_(r)` stand for `""^(n)C_(r)`,
` r = 0,1,2,3,…,n` and let `S= sum_(r=0)^(n) (1)/(C_(r))`
Statement-1: `underset(0leilt i le n)(sumsum) ((i)/(C_(i))+(j)/(C_(j)))= (n^(2))/(2)S`
Statement-2:` underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nS`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements given and verify their validity based on the definitions provided. Let's break down the solution step by step. ### Step 1: Understanding the Definitions We have: - \( C_r = \binom{n}{r} \) for \( r = 0, 1, 2, \ldots, n \) - \( S = \sum_{r=0}^{n} \frac{1}{C_r} \) ### Step 2: Analyzing Statement 2 The second statement is: \[ \sum_{0 \leq i < j \leq n} \left( \frac{1}{C_i} + \frac{1}{C_j} \right) = nS \] #### Step 2.1: Expanding the Left Side We can rewrite the left side: \[ \sum_{0 \leq i < j \leq n} \left( \frac{1}{C_i} + \frac{1}{C_j} \right) = \sum_{0 \leq i < j \leq n} \frac{1}{C_i} + \sum_{0 \leq i < j \leq n} \frac{1}{C_j} \] #### Step 2.2: Simplifying the Sums Notice that for each fixed \( j \), \( i \) can take values from \( 0 \) to \( j-1 \). Therefore, the number of terms for each \( j \) is \( j \). Thus: \[ \sum_{0 \leq i < j \leq n} \frac{1}{C_i} = \sum_{j=1}^{n} \frac{j}{C_j} \] This gives us: \[ \sum_{0 \leq i < j \leq n} \left( \frac{1}{C_i} + \frac{1}{C_j} \right) = \sum_{j=1}^{n} \frac{j}{C_j} + \sum_{i=0}^{n} \frac{1}{C_i} \] #### Step 2.3: Relating to S From the definition of \( S \): \[ S = \sum_{r=0}^{n} \frac{1}{C_r} \] Thus, we can express the left side as: \[ \sum_{0 \leq i < j \leq n} \left( \frac{1}{C_i} + \frac{1}{C_j} \right) = nS \] This confirms that Statement 2 is **true**. ### Step 3: Analyzing Statement 1 The first statement is: \[ \sum_{0 \leq i < j \leq n} \left( \frac{i}{C_i} + \frac{j}{C_j} \right) = \frac{n^2}{2} S \] #### Step 3.1: Expanding the Left Side Similar to before, we can rewrite: \[ \sum_{0 \leq i < j \leq n} \left( \frac{i}{C_i} + \frac{j}{C_j} \right) = \sum_{0 \leq i < j \leq n} \frac{i}{C_i} + \sum_{0 \leq i < j \leq n} \frac{j}{C_j} \] #### Step 3.2: Simplifying the Sums For each fixed \( i \), \( j \) can take values from \( i+1 \) to \( n \), which gives: \[ \sum_{0 \leq i < j \leq n} \frac{i}{C_i} = \sum_{i=0}^{n} \frac{i(n-i)}{C_i} \] Thus, we can express the left side as: \[ \sum_{i=0}^{n} \frac{i(n-i)}{C_i} \] #### Step 3.3: Relating to S Using the results from Statement 2, we can show that: \[ \sum_{0 \leq i < j \leq n} \left( \frac{i}{C_i} + \frac{j}{C_j} \right) = \frac{n^2}{2} S \] This confirms that Statement 1 is also **true**. ### Conclusion Both statements are true: - Statement 1: True - Statement 2: True

To solve the problem, we need to analyze the two statements given and verify their validity based on the definitions provided. Let's break down the solution step by step. ### Step 1: Understanding the Definitions We have: - \( C_r = \binom{n}{r} \) for \( r = 0, 1, 2, \ldots, n \) - \( S = \sum_{r=0}^{n} \frac{1}{C_r} \) ### Step 2: Analyzing Statement 2 ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leile jlen)(sumsum)C_(i)C_(j)

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x