Home
Class 11
MATHS
Statement -1: sum(r=0)^(n) r(""^(n)C(r)...

Statement -1: ` sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1))`
Statement-2: ` sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the two statements given: 1. **Statement 1**: \(\sum_{r=0}^{n} r \binom{n}{r}^2 = n \binom{2n-1}{n-1}\) 2. **Statement 2**: \(\sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n}\) ### Step-by-Step Solution: **Step 1: Verify Statement 1** We start with the left-hand side of Statement 1: \[ \sum_{r=0}^{n} r \binom{n}{r}^2 \] Using the identity \( r \binom{n}{r} = n \binom{n-1}{r-1} \), we can rewrite the summation: \[ \sum_{r=0}^{n} r \binom{n}{r}^2 = \sum_{r=1}^{n} n \binom{n-1}{r-1} \binom{n}{r} \] This can be simplified further: \[ = n \sum_{r=1}^{n} \binom{n-1}{r-1} \binom{n}{r} \] Changing the index of summation by letting \( k = r - 1 \): \[ = n \sum_{k=0}^{n-1} \binom{n-1}{k} \binom{n}{k+1} \] Using Vandermonde's identity, we know that: \[ \sum_{k=0}^{m} \binom{a}{k} \binom{b}{m-k} = \binom{a+b}{m} \] Applying this identity here gives: \[ = n \binom{2n-1}{n-1} \] Thus, we have verified Statement 1: \[ \sum_{r=0}^{n} r \binom{n}{r}^2 = n \binom{2n-1}{n-1} \] **Step 2: Verify Statement 2** Now we check Statement 2: \[ \sum_{r=0}^{n} \binom{n}{r}^2 \] Using the identity that states the sum of the squares of binomial coefficients is given by: \[ \sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n} \] This is a well-known result derived from the expansion of \((1+x)^n(1+x)^n = (1+x)^{2n}\). The coefficient of \(x^n\) in this expansion is \(\binom{2n}{n}\). Thus, we have verified Statement 2: \[ \sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n} \] ### Conclusion Both statements are true: - **Statement 1** is true: \(\sum_{r=0}^{n} r \binom{n}{r}^2 = n \binom{2n-1}{n-1}\) - **Statement 2** is true: \(\sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n}\) However, Statement 2 does not serve as a correct explanation for Statement 1.

To solve the problem, we need to verify the two statements given: 1. **Statement 1**: \(\sum_{r=0}^{n} r \binom{n}{r}^2 = n \binom{2n-1}{n-1}\) 2. **Statement 2**: \(\sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n}\) ### Step-by-Step Solution: **Step 1: Verify Statement 1** ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .