Home
Class 11
MATHS
Statement-1: (C(0))/(2.3)- (C(1))/(3.4) ...

Statement-1: `(C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2))`
Statement-2:`(C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze both statements step by step. ### Step 1: Understanding Statement 1 The first statement is: \[ \frac{C_0}{2 \cdot 3} - \frac{C_1}{3 \cdot 4} + \frac{C_2}{4 \cdot 5} - \ldots + (-1)^n \frac{C_n}{(n+2)(n+3)} = \frac{1}{(n+1)(n+2)} \] where \( C_k \) represents the binomial coefficient \( \binom{n}{k} \). ### Step 2: Understanding Statement 2 The second statement is: \[ \frac{C_0}{k} - \frac{C_1}{k+1} + \frac{C_2}{k+2} - \ldots + (-1)^n \frac{C_n}{k+n} = \int_0^1 x^{k-1} (1 - x)^n \, dx \] This is a known result related to the binomial theorem and integration. ### Step 3: Establishing the Connection To prove Statement 1 using Statement 2, we can set \( k = 2 \) in Statement 2: \[ \frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \ldots + (-1)^n \frac{C_n}{2+n} = \int_0^1 x^{1} (1 - x)^n \, dx \] ### Step 4: Evaluating the Integral The integral can be evaluated using the Beta function: \[ \int_0^1 x^{1} (1 - x)^n \, dx = \frac{1 \cdot n!}{(1+n+1)!} = \frac{n!}{(n+2)!} = \frac{1}{(n+1)(n+2)} \] ### Step 5: Conclusion Now, substituting back, we have: \[ \frac{C_0}{2 \cdot 3} - \frac{C_1}{3 \cdot 4} + \frac{C_2}{4 \cdot 5} - \ldots + (-1)^n \frac{C_n}{(n+2)(n+3)} = \frac{1}{(n+1)(n+2)} \] This confirms that Statement 1 is true.

To solve the given problem, we will analyze both statements step by step. ### Step 1: Understanding Statement 1 The first statement is: \[ \frac{C_0}{2 \cdot 3} - \frac{C_1}{3 \cdot 4} + \frac{C_2}{4 \cdot 5} - \ldots + (-1)^n \frac{C_n}{(n+2)(n+3)} = \frac{1}{(n+1)(n+2)} \] where \( C_k \) represents the binomial coefficient \( \binom{n}{k} \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Show that (C_(0))/(1) - (C_(1))/(4) + (C_(2))/(7) - … + (-1)^(n) (C_(n))/(3n +1) = (3^(n) * n!)/(1*4*7…(3n+1)) , where C_(r) stands for ""^(n)C_(r) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , show that C_(1) - (C_(2))/(2) + (C_(3))/(3) - …(-1)^(n-1) (C_(n))/(n) = 1 + (1)/(2) + (1)/(3) + …+ (1)/(n) .

If (1+x)^(n)=C_(0)+C_(1)x+…..+C_(n)x^(n) , then (C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1)) is :

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(0))/(C_(1))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .