Home
Class 11
MATHS
Let a, b, c be the sides of DeltaABC opp...

Let a, b, c be the sides of `Delta`ABC opposite to angles
A, b,C respecitvely.
Let `alpha = sum_(r=0)^(n) ""^(n)C_(r) b^(n-r) c^(r) cos{rB - (n-r)C}`
and `beta = sum_(r=0)^(n) ""^(n)C_(r) b^(n-r) c^(r) sin{rB - (n-r)C}`
Statement -1: `alpha = alpha^(n)`
Statement-2: `beta = alpha^(n)`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions for \(\alpha\) and \(\beta\) and analyze the given statements. ### Step-by-Step Solution: 1. **Define the Expressions**: We have: \[ \alpha = \sum_{r=0}^{n} \binom{n}{r} b^{n-r} c^{r} \cos(rB - (n-r)C) \] \[ \beta = \sum_{r=0}^{n} \binom{n}{r} b^{n-r} c^{r} \sin(rB - (n-r)C) \] 2. **Combine \(\alpha\) and \(\beta\)**: We can express \(\alpha + i\beta\) as: \[ \alpha + i\beta = \sum_{r=0}^{n} \binom{n}{r} b^{n-r} c^{r} e^{i(rB - (n-r)C)} \] This uses Euler's formula, where \(e^{ix} = \cos x + i\sin x\). 3. **Factor the Exponential**: The expression can be factored as: \[ \alpha + i\beta = \sum_{r=0}^{n} \binom{n}{r} b^{n-r} c^{r} e^{i(rB - (n-r)C)} = (b e^{iC} + c e^{iB})^n \] This is a result of the binomial expansion. 4. **Evaluate the Magnitude**: Let \(z = b e^{iC} + c e^{iB}\). Then: \[ \alpha + i\beta = z^n \] Hence, we can write: \[ \alpha = \text{Re}(z^n) \quad \text{and} \quad \beta = \text{Im}(z^n) \] 5. **Analyze the Statements**: - **Statement 1**: \(\alpha = \alpha^n\) - **Statement 2**: \(\beta = \alpha^n\) From the expression for \(\alpha\), we can see that \(\alpha\) is indeed equal to \(\alpha^n\) under certain conditions (specifically when \(\beta = 0\)). Therefore, Statement 1 can be considered true. For Statement 2, we derived that \(\beta\) can be expressed in terms of \(b\) and \(c\) and it does not equal \(\alpha^n\) in general. Thus, Statement 2 is false. ### Conclusion: - **Statement 1** is true: \(\alpha = \alpha^n\) - **Statement 2** is false: \(\beta \neq \alpha^n\)

To solve the problem, we need to evaluate the expressions for \(\alpha\) and \(\beta\) and analyze the given statements. ### Step-by-Step Solution: 1. **Define the Expressions**: We have: \[ \alpha = \sum_{r=0}^{n} \binom{n}{r} b^{n-r} c^{r} \cos(rB - (n-r)C) ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is