Home
Class 11
MATHS
Prove that 1/(m!).^(n)C(0)+(n)/((m+1)!...

Prove that
`1/(m!).^(n)C_(0)+(n)/((m+1)!).^(n)C_(1)+(n(n-1))/((m+2)!).^(n)C_(2)+"....."+(n(n-1)"...."2xx1)/((m+2)!).^(n)C_(n) = ((m+n+1)(m+n+2)"....."(m+2n))/((m+n)!)`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
a

We have,
`""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r)`
= Coefficient of `x^(r)` in `{ (1 + x)^(m) (1 + x)^(n)}`
= Coefficient of `x^(r)` in ` (1 + x)^(m + n) = ""^(m+n)C_(r)`
So, statement-2 is true.
Now,
`(1)/(m!) C_(0) + (n)/((m+1)!) C_(1) (n(n-1))/((m+2)!) C_(2) +... + (n(n-1) (n -2)...2.1)/((m +n)!) C_(n)`
`= (n!)/((m + n)!) { ((m+n)!)/(m!n!) ""^(n)C_(0) + ((m +n)!)/((m+1)!( n-1)!) ""^(n)C_(1)`
` + ((m + n)!)/((n-2)!) ""^(r)C_(2) +...+ ((m+n)!)/((m+n)!) ""^(n)C_(n)}`
`= (n!)/((m+n)!) {""^(m+n)C_(n-2) ""^(n)C_(0) + ""^(m+n)C_(n-1) ""^(n)C_(1) + ""^(m+n)C_(n-2)""^(n)C_(2) +...+""^(m+n)C_(0)""^(n)C_(n)}`
`= (n!)/((m+n)!)""^(m+n+n)C_(n)` [Using statement-2]
`= (n!)/((m+n)!) xx((m + 2n)!)/((m+n)!n!) `
`=((m +n+1)(m +n+2)(m+ 2n))/((m+n)!) `
So, statement-1 is also true. Statement-2 is a correct
expanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

Let m, in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) .

Prove that 1/(m !)^n C_0+n/((m+1)!)^n C_1+(n(n-1))/((m+2)!)^n C_2++(n(n-1)2xx1)/((m+n)!)^n C_n=((m+n+1)(m+n+2)(m+2n))/((m+n)!)

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .