Home
Class 11
MATHS
Consider two curves C1:y^2=4x ; C2=x^2+y...

Consider two curves `C1:y^2=4x` ; `C2=x^2+y^2-6x+1=0`. Then, a. C1 and C2 touch each other at one point b. C1 and C2 touch each other exactly at two point c. C1 and C2 intersect(but do not touch) at exactly two point d. C1 and C2 neither intersect nor touch each other

A

`C_(1)" and "C_(2)` touch each other at one point

B

`C_(1)" and "C_(2)` touch eacth other exactly at two point

C

`C_(1)" and "C_(2)` intersect ( but do not touch) at exactly two points

D

`C_(1)" and "C_(2)` neither intersect not touch each other

Text Solution

Verified by Experts

The correct Answer is:
B

The x-coordinates of the points of intersection of `C_(1)" and "C_(2)` are roots of the equation
`x^(2)+4x-6x+2=0rArrx=1`
Putting x = 1 in `y^(2)=4x`, we get `y = +- 2`.
Thus, two curves intersect at (1, 2) and (1, -2).
Equations of tangents to `C_(1)" and "C_(2)` at (1, 2) are
`2y=2(x+1)" and "x+2y-3(x+1)+1=0`
`"or, y=x+1 and y=x+1"`
Thus, `C_(1)" and "C_(2)` touch each other at P(1, 2). Similarly, `C_(1)" and C_(2)` have the same tangent x + y + 1 = 0 at Q(1, -2).
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|66 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise SECTION-I (SOLVED MCQs EXAMPLE)|1 Videos
  • PAIR OF STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Prove that the curves y^2=4x and x^2+y^2-6x+1=0 touch each other at the points (1,\ 2) .

Prove that the curves y^2=4x and x^2+y^2-6x+1=0 touch each other at the points (1,\ 2) .

The circles x^2+y^2-12 x-12 y=0 and x^2+y^2+6x+6y=0. a.touch each other externally b.touch each other internally c.intersect at two points d.none of these

Two circles x^2 + y^2 + 2x-4y=0 and x^2 + y^2 - 8y - 4 = 0 (A) touch each other externally (B) intersect each other (C) touch each other internally (D) none of these

The radical axis of two circles having centres at C_(1) and C_(2) and radii r_(1) and r_(2) is neither intersecting nor touching any of the circles, if

Consider the circles x^2+(y-1)^2=9,(x-1)^2+y^2=25. They are such that these circles touch each other one of these circles lies entirely inside the other each of these circles lies outside the other they intersect at two points.

Find the value of a ,b ,c such that curves y=x^2+a x+ba n dy=c x-x^2 will touch each other at the point (1,0) then (a+b+c)=

The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each other if

If the circles x^2+y^2+2ax+c=0 and x^2+y^2+2by+c=0 touch each other, then find the relation between a, b and c .

Parabola y^2=4a(x-c_1) and x^2=4a(y-c_2) where c_1 and c_2 are variables, touch each other. Locus of their point of contact is

OBJECTIVE RD SHARMA ENGLISH-PARABOLA-Chapter Test
  1. Consider two curves C1:y^2=4x ; C2=x^2+y^2-6x+1=0. Then, a. C1 and C2 ...

    Text Solution

    |

  2. If y=2x+k is a tangent to the curve x^(2)=4y, then k is equal to

    Text Solution

    |

  3. The normal drawn at a point (a t1 2,-2a t1) of the parabola y^2=4a x m...

    Text Solution

    |

  4. The mid-point of the chord 2x+y-4=0 of the parabola y^(2)=4x is

    Text Solution

    |

  5. The two ends of latusrectum of a parabola are the points (3, 6) and (-...

    Text Solution

    |

  6. Prove that the locus of the middle points of all chords of the parabol...

    Text Solution

    |

  7. The focus of the parabola x^2-8x+2y+7=0 is

    Text Solution

    |

  8. The point of contact of the line x-2y-1=0 with the parabola y^(2)=2(x-...

    Text Solution

    |

  9. Find the number of distinct normals that can be drawn from (-2,1) to t...

    Text Solution

    |

  10. At what point on the parabola y^2=4x the normal makes equal angle with...

    Text Solution

    |

  11. Three normals to the parabola y^2= x are drawn through a point (C, O) ...

    Text Solution

    |

  12. The normal chord of a parabola y^2= 4ax at the point P(x1, x1) subten...

    Text Solution

    |

  13. AB, AC are tangents to a parabola y^2=4ax; p1, p2, p3 are the lengths...

    Text Solution

    |

  14. The circles on the focal radii of a parabola as diameter touch: A) th...

    Text Solution

    |

  15. If the normals from any point to the parabola y^2=4x cut the line x=2 ...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. The equation of the tangent to the parabola y^(2)=8x which is perpendi...

    Text Solution

    |

  18. the tangent drawn at any point P to the parabola y^2= 4ax meets the di...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. The parabola y^(2)=4ax passes through the point (2,-6). Find the lengt...

    Text Solution

    |

  21. A variable circle passes through the fixed point (2, 0) and touches y-...

    Text Solution

    |