Home
Class 11
MATHS
The tangents to the parabola y^2=4a x at...

The tangents to the parabola `y^2=4a x` at the vertex `V` and any point `P` meet at `Q` . If `S` is the focus, then prove that `S PdotS Q ,` and `S V` are in GP.

A

`A.P.`

B

`G.P.`

C

`H.P.`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let `y^(2)=4ax` be a parabola with vertex at A(0, 0) and `P(at^(2), 2at)` be any point on it. The equation of tangents at A and P are x=0 and `ty=x+at^(3)` respectively. These two intersect at Q(0, at). The focus S of dsthe parabola `y^(2)=4ax` has coordinates (a, 0).
`:." "SP=a+at^(2),SQ=ssqrt(1+t^(2))" and "SA=a` ltrbgt `rArr" "SQ^(2)=SPxxSArArrSP, SQ, SA" are in G.P."`
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|66 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise SECTION-I (SOLVED MCQs EXAMPLE)|1 Videos
  • PAIR OF STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If the tangents at the points Pa n dQ on the parabola y^2=4a x meet at T ,a n dS is its focus, the prove that S P ,S T ,a n dS Q are in GP.

If the tangents at the points Pa n dQ on the parabola y^2=4a x meet at T ,a n dS is its focus, the prove that S P ,S T ,a n dS Q are in GP.

If the normals to the parabola y^2=4a x at three points P ,Q ,a n dR meet at A ,a n dS is the focus, then S PdotS qdotS R is equal to a^2S A (b) S A^3 (c) a S A^2 (d) none of these

Two tangents to the parabola y^(2) = 8x meet the tangent at its vertex in the points P & Q. If PQ = 4 units, prove that the locus of the point of the intersection of the two tangents is y^(2) = 8 (x + 2) .

Two mutually perpendicular tangents of the parabola y^2=4a x meet the axis at P_1a n dP_2 . If S is the focus of the parabola, then 1/(S P_1) +1/(S P_2) is equal to 4/a (b) 2/1 (c) 1/a (d) 1/(4a)

If S be the focus of the parabola and tangent and normal at any point P meet its axis in T and G respectively, then prove that ST=SG = SP .

A tangent to the parabola y^2 + 4bx = 0 meets the parabola y^2 = 4ax in P and Q. The locus of the middle points of PQ is:

A variable tangent to the parabola y^(2)=4ax meets the parabola y^(2)=-4ax P and Q. The locus of the mid-point of PQ, is

If the tangents at the points P and Q on the parabola y^2 = 4ax meet at R and S is its focus, prove that SR^2 = SP.SQ .

If the normals at P, Q, R of the parabola y^2=4ax meet in O and S be its focus, then prove that .SP . SQ . SR = a . (SO)^2 .

OBJECTIVE RD SHARMA ENGLISH-PARABOLA-Chapter Test
  1. The tangents to the parabola y^2=4a x at the vertex V and any point P ...

    Text Solution

    |

  2. If y=2x+k is a tangent to the curve x^(2)=4y, then k is equal to

    Text Solution

    |

  3. The normal drawn at a point (a t1 2,-2a t1) of the parabola y^2=4a x m...

    Text Solution

    |

  4. The mid-point of the chord 2x+y-4=0 of the parabola y^(2)=4x is

    Text Solution

    |

  5. The two ends of latusrectum of a parabola are the points (3, 6) and (-...

    Text Solution

    |

  6. Prove that the locus of the middle points of all chords of the parabol...

    Text Solution

    |

  7. The focus of the parabola x^2-8x+2y+7=0 is

    Text Solution

    |

  8. The point of contact of the line x-2y-1=0 with the parabola y^(2)=2(x-...

    Text Solution

    |

  9. Find the number of distinct normals that can be drawn from (-2,1) to t...

    Text Solution

    |

  10. At what point on the parabola y^2=4x the normal makes equal angle with...

    Text Solution

    |

  11. Three normals to the parabola y^2= x are drawn through a point (C, O) ...

    Text Solution

    |

  12. The normal chord of a parabola y^2= 4ax at the point P(x1, x1) subten...

    Text Solution

    |

  13. AB, AC are tangents to a parabola y^2=4ax; p1, p2, p3 are the lengths...

    Text Solution

    |

  14. The circles on the focal radii of a parabola as diameter touch: A) th...

    Text Solution

    |

  15. If the normals from any point to the parabola y^2=4x cut the line x=2 ...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. The equation of the tangent to the parabola y^(2)=8x which is perpendi...

    Text Solution

    |

  18. the tangent drawn at any point P to the parabola y^2= 4ax meets the di...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. The parabola y^(2)=4ax passes through the point (2,-6). Find the lengt...

    Text Solution

    |

  21. A variable circle passes through the fixed point (2, 0) and touches y-...

    Text Solution

    |