Home
Class 11
MATHS
Mutually perpendicular tangents T Aa n d...

Mutually perpendicular tangents `T Aa n dT B` are drawn to `y^2=4a x` . Then find the minimum length of `A Bdot`

A

a

B

2a

C

4a

D

8a

Text Solution

Verified by Experts

The correct Answer is:
C

We know that tangents at the ends of focal chord are perpendicualar. Thus, the chord of contanct of perpendicualar tangents is a focal chord. Also, latusrectum is a focal chord of minimum length. Hence, the minimum length of AB is 4a.
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|66 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise SECTION-I (SOLVED MCQs EXAMPLE)|1 Videos
  • PAIR OF STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Mutually perpendicular tangents TA and TB are drawn to y^2=4a x . Then find the minimum length of AB

If eight distinct points can be found on the curve |x|+|y|=1 such that from eachpoint two mutually perpendicular tangents can be drawn to the circle x^2+y^2=a^2, then find the range of adot

If from a point P(a ,b ,c) prpendiculars P Aa n dP B are drawn to y za n dz x-p l a n e s , find the eqution of th plane O A Bdot

If from a point P(a ,b ,c) perpendiculars P Aa n dP B are drawn to Y Za n dZ X-p l a n e s find the vectors equation of the plane O A Bdot

Two mutually perpendicular chords OA and OB are drawn through the vertex 'O' of a parabola y^(2)=4ax . Then find the locus of the circumcentre of triangle OAB.

The number of points on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=3 from which mutually perpendicular tangents can be drawn to the circle x^2+y^2=a^2 is/are (a)0 (b) 2 (c) 3 (d) 4

The number of points on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=3 from which mutually perpendicular tangents can be drawn to the circle x^2+y^2=a^2 is/are (a) 0 (b) 2 (c) 3 (d) 4

The focus of a parabola is (0, 0) and vertex (1, 1). If two mutually perpendicular tangents can be drawn to a parabola from the circle (x-2)^(2)+(y-3)^(2)=r^(2) ,then

Statement 1 : mutually perpendicular tangents are drawn from point (alpha, 7) to ellipse x^2/576 + y^2/49 = 1 then alpha = +- 24 . Statement 2 : Locus of points of intersection of mutually perpendicular tangents to an ellipse is a circle

Tangents P Aa n dP B are drawn to x^2+y^2=a^2 from the point P(x_1, y_1)dot Then find the equation of the circumcircle of triangle P A Bdot

OBJECTIVE RD SHARMA ENGLISH-PARABOLA-Chapter Test
  1. Mutually perpendicular tangents T Aa n dT B are drawn to y^2=4a x . Th...

    Text Solution

    |

  2. If y=2x+k is a tangent to the curve x^(2)=4y, then k is equal to

    Text Solution

    |

  3. The normal drawn at a point (a t1 2,-2a t1) of the parabola y^2=4a x m...

    Text Solution

    |

  4. The mid-point of the chord 2x+y-4=0 of the parabola y^(2)=4x is

    Text Solution

    |

  5. The two ends of latusrectum of a parabola are the points (3, 6) and (-...

    Text Solution

    |

  6. Prove that the locus of the middle points of all chords of the parabol...

    Text Solution

    |

  7. The focus of the parabola x^2-8x+2y+7=0 is

    Text Solution

    |

  8. The point of contact of the line x-2y-1=0 with the parabola y^(2)=2(x-...

    Text Solution

    |

  9. Find the number of distinct normals that can be drawn from (-2,1) to t...

    Text Solution

    |

  10. At what point on the parabola y^2=4x the normal makes equal angle with...

    Text Solution

    |

  11. Three normals to the parabola y^2= x are drawn through a point (C, O) ...

    Text Solution

    |

  12. The normal chord of a parabola y^2= 4ax at the point P(x1, x1) subten...

    Text Solution

    |

  13. AB, AC are tangents to a parabola y^2=4ax; p1, p2, p3 are the lengths...

    Text Solution

    |

  14. The circles on the focal radii of a parabola as diameter touch: A) th...

    Text Solution

    |

  15. If the normals from any point to the parabola y^2=4x cut the line x=2 ...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. The equation of the tangent to the parabola y^(2)=8x which is perpendi...

    Text Solution

    |

  18. the tangent drawn at any point P to the parabola y^2= 4ax meets the di...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. The parabola y^(2)=4ax passes through the point (2,-6). Find the lengt...

    Text Solution

    |

  21. A variable circle passes through the fixed point (2, 0) and touches y-...

    Text Solution

    |