Home
Class 11
MATHS
Three normals drawn from a point (h k) t...

Three normals drawn from a point (h k) to parabola `y^2 = 4ax`

A

`hgta" and "k^(2)gt4/(27a)(h-2a)^(2)`

B

`hgt2a" and "k^(2)gt4/(27a)(h-2a)^(2)`

C

`hgt2a" and "k^(2)lt4/(27a)(h-2a)^(2)`

D

`hgt2a`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|66 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise SECTION-I (SOLVED MCQs EXAMPLE)|1 Videos
  • PAIR OF STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Prove that the feet of the normals drawn from the point (h, k) to the parabola y^2 -4ax lie on the curve xy-(h-2a)y-2ak=0 .

If normal are drawn from a point P(h , k) to the parabola y^2=4a x , then the sum of the intercepts which the normals cut-off from the axis of the parabola is (h+c) (b) 3(h+a) 2(h+a) (d) none of these

If two of the three feet of normals drawn from a point to the parabola y^2=4x are (1, 2) and (1,-2), then find the third foot.

If two of the three feet of normals drawn from a point to the parabola y^2=4x are (1, 2) and (1,-2), then find the third foot.

Show that the locus of points such that two of the three normals drawn from them to the parabola y^2 = 4ax coincide is 27ay^2 = 4(x-2a)^3 .

The number of normals drawn from the point (6, -8) to the parabola y^2 - 12y - 4x + 4 = 0 is

Three normals are drawn from the point (a,0) to the parabola y^2=x . One normal is the X-axis . If other two normals are perpendicular to each other , then the value of 4a is

If three normals are drawn from the point (c, 0) to the parabola y^(2)=4x and two of which are perpendicular, then the value of c is equal to

Three normals are drawn from the point (7, 14) to the parabola x^2-8x-16 y=0 . Find the coordinates of the feet of the normals.

If the tangents drawn from the point (0, 2) to the parabola y^2 = 4ax are inclined at angle (3pi)/4 , then the value of 'a' is

OBJECTIVE RD SHARMA ENGLISH-PARABOLA-Chapter Test
  1. Three normals drawn from a point (h k) to parabola y^2 = 4ax

    Text Solution

    |

  2. If y=2x+k is a tangent to the curve x^(2)=4y, then k is equal to

    Text Solution

    |

  3. The normal drawn at a point (a t1 2,-2a t1) of the parabola y^2=4a x m...

    Text Solution

    |

  4. The mid-point of the chord 2x+y-4=0 of the parabola y^(2)=4x is

    Text Solution

    |

  5. The two ends of latusrectum of a parabola are the points (3, 6) and (-...

    Text Solution

    |

  6. Prove that the locus of the middle points of all chords of the parabol...

    Text Solution

    |

  7. The focus of the parabola x^2-8x+2y+7=0 is

    Text Solution

    |

  8. The point of contact of the line x-2y-1=0 with the parabola y^(2)=2(x-...

    Text Solution

    |

  9. Find the number of distinct normals that can be drawn from (-2,1) to t...

    Text Solution

    |

  10. At what point on the parabola y^2=4x the normal makes equal angle with...

    Text Solution

    |

  11. Three normals to the parabola y^2= x are drawn through a point (C, O) ...

    Text Solution

    |

  12. The normal chord of a parabola y^2= 4ax at the point P(x1, x1) subten...

    Text Solution

    |

  13. AB, AC are tangents to a parabola y^2=4ax; p1, p2, p3 are the lengths...

    Text Solution

    |

  14. The circles on the focal radii of a parabola as diameter touch: A) th...

    Text Solution

    |

  15. If the normals from any point to the parabola y^2=4x cut the line x=2 ...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. The equation of the tangent to the parabola y^(2)=8x which is perpendi...

    Text Solution

    |

  18. the tangent drawn at any point P to the parabola y^2= 4ax meets the di...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. The parabola y^(2)=4ax passes through the point (2,-6). Find the lengt...

    Text Solution

    |

  21. A variable circle passes through the fixed point (2, 0) and touches y-...

    Text Solution

    |