Home
Class 11
MATHS
Let P and Q be distinct points on the pa...

Let P and Q be distinct points on the parabola `y^2 = 2x` such that a circle with PQ as diameter passes through the vertex O of the parabola. If P lies in the first quadrant and the area of the triangle `Delta OPQ` is `3 sqrt 2` , then which of the following is (are) the coordinates of `P?`

A

`(4, 2sqrt2)`

B

`(9, 3sqrt2)`

C

`(1//4, 1//sqrt2)`

D

`(1, sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
A, D

Let the parametric coordinates of P and Q be `(t^(2)/2,t)" and "(t_(1)^(2)/2,t_(1))` respectively.
Clearly,
`/_POQ=pi/2`
`rArr" Slope of "Opxx"Slope of "OQ =-1`
`rArr" "t_(1)=-4/1`
So, coordinates of Q are `(8/t^(2), -4t)`
It is given that the area of `DeltaOPQ" is " 3sqrt2` square units.
`:." "1/2(OPxxOQ)=3sqrt2`
`rArr" "1/2xxsqrt(1/4t^(4)+t^(2))xxsqrt((64)/t^(2)+16/t^(2))=3sqrt2`
`rArr" "t^(2)+4=3sqrt2t`
`rArr" "t^(2)-3sqrt2t+4=0`
`rArr" "(t-2sqrt2)(t-sqrt2)=0rArrt=2sqrt2ort=sqrt2`
Hence, the coordinates of P are `(4, 2sqrt2)" or "(1, sqrt2)`.
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise SECTION-I (SOLVED MCQs EXAMPLE)|1 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|7 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • PAIR OF STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Let PQ be a chord of the parabola y^2=4x . A circle drawn with PQ as a diameter passes through the vertex V of theparabola. If ar(Delta PVQ)=20 sq unit then the coordinates of P are

Let AB be a chord of the parabola x^(2) = 4y . A circle drawn with AB as diameter passes through the vertex C of the parabola. If area of DeltaABC = 20 sq . units then the coordinates of A can be

An equilateral triangle is inscribed in the parabola y^2=4a x , such that one vertex of this triangle coincides with the vertex of the parabola. Then find the side length of this triangle.

An equilateral triangle is inscribed in the parabola y^2=4a x , such that one vertex of this triangle coincides with the vertex of the parabola. Then find the side length of this triangle.

P and Q are two distinct points on the parabola, y^2 = 4x with parameters t and t_1 respectively. If the normal at P passes through Q , then the minimum value of t_1 ^2 is

An equilateral triangle is inscribed in the parabola y^(2) = 8x with one of its vertices is the vertex of the parabola. Then, the length or the side or that triangle is

Let P(2, 2) and Q(1//2, -1) be two points on the parabola y^(2)=2x , The coordinates of the point R on the parabola y^(2) =2x where the tangent to the curve is parallel to the chord PQ, are

T P and T Q are tangents to the parabola y^2=4a x at P and Q , respectively. If the chord P Q passes through the fixed point (-a ,b), then find the locus of Tdot

The triangle PQR of area 'A' is inscribed in the parabola y^2=4ax such that the vertex P lies at the vertex pf the parabola and base QR is a focal chord.The modulus of the difference of the ordinates of the points Q and R is :

If P is the point (1,0) and Q is any point on the parabola y^(2) = 8x then the locus of mid - point of PQ is

OBJECTIVE RD SHARMA ENGLISH-PARABOLA-Section I - Solved Mcqs
  1. The locus of the midpoint of the segment joining the focus to a moving...

    Text Solution

    |

  2. The radical centre of the circles drawn on the focal chords of y^(2)=4...

    Text Solution

    |

  3. For each parabola y=x^(2)+px+q, meeting coordinate axes at 3-distinct ...

    Text Solution

    |

  4. Let A(x(1),y(1)) and B(x(2),y(2)) be two points on the parabola y^(2) ...

    Text Solution

    |

  5. Let A and B be two distinct points on the parabola y^2=4x. If the ax...

    Text Solution

    |

  6. the shortest distance between the line y-x=1 and the curve x=y^(2) ...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. Let PQ be a focal chord of the parabola y^(2)=4ax. The tangents to the...

    Text Solution

    |

  9. Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2a...

    Text Solution

    |

  10. Let a, r, s, t be non-zero real numbers. Let P(at^(2),2at),Q(ar^(2),2a...

    Text Solution

    |

  11. Let P and Q be distinct points on the parabola y^2 = 2x such that a c...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. PSQ is a focal chord of a parabola whose focus is S and vertex is A. P...

    Text Solution

    |

  14. Let P be the point on the parabola y^(2)4x which is at the shortest di...

    Text Solution

    |

  15. Let P be the point on the parabola, y^(2)=8x which is at a minimum dis...

    Text Solution

    |

  16. P and Q are two distinct points on the parabola, y^2 = 4x with paramet...

    Text Solution

    |

  17. Let PQ be a focal chord of the parabola y^(2)=4x. If the centre of a c...

    Text Solution

    |

  18. The centres of those circles which touch the circle, x^(2)+y^(2)-8x-8y...

    Text Solution

    |

  19. The radius of a circle, having minimum area, which touches the curve...

    Text Solution

    |

  20. If a chord , which is not a tangent of the parabola y^2=16x has the eq...

    Text Solution

    |