Home
Class 11
MATHS
The circles on focal radii of a parabola...

The circles on focal radii of a parabola as diameter touch

A

axis

B

directrix

C

tangent at the vertex

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|82 Videos
  • PAIR OF STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The circles on the focal radii of a parabola as diameter touch: A) the tangent at the vertex B) the axis C) the directrix D) latus rectum

Circles are described on any focal chords of a parabola as diameters touches its directrix

Prove that the circle described on the focal chord of parabola as a diameter touches the directrix

A circle of radius 4 drawn on a chord of the parabola y^(2)=8x as diameter touches the axis of the parabola. Then the slope of the chord is

Circle described on the focal chord as diameter touches

Statement 1: In the parabola y^2=4a x , the circle drawn the taking the focal radii as diameter touches the y-axis. Statement 2: The portion of the tangent intercepted between the point of contact and directrix subtends an angle of 90^0 at focus.

A circle drawn on any focal chord of the parabola y^(2)=4ax as diameter cuts the parabola at two points 't' and 't' (other than the extremity of focal chord), then find the value of tt'.

The locus of the mid-point of the line segment joining a point on the parabola Y^(2)=4ax and the point of contact of circle drawn on focal distance of the point as diameter with the tangent at the vertex, is

Let A and B be two distinct points on the parabola y^2=4x . If the axis of the parabola touches a circle of radius r having AB as its diameter, then find the slope of the line joining A and B .

A circle drawn on any focal AB of the parabola y^(2)=4ax as diameter cute the parabola again at C and D. If the parameters of the points A, B, C, D be t_(1), t_(2), t_(3)" and "t_(4) respectively, then the value of t_(3),t_(4) , is

OBJECTIVE RD SHARMA ENGLISH-PARABOLA-Chapter Test
  1. The normal chord of a parabola y^2= 4ax at the point P(x1, x1) subten...

    Text Solution

    |

  2. AB, AC are tangents to a parabola y^2=4ax; p1, p2, p3 are the lengths...

    Text Solution

    |

  3. The circles on the focal radii of a parabola as diameter touch: A) th...

    Text Solution

    |

  4. If the normals from any point to the parabola y^2=4x cut the line x=2 ...

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. The equation of the tangent to the parabola y^(2)=8x which is perpendi...

    Text Solution

    |

  7. the tangent drawn at any point P to the parabola y^2= 4ax meets the di...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. The parabola y^(2)=4ax passes through the point (2,-6). Find the lengt...

    Text Solution

    |

  10. A variable circle passes through the fixed point (2, 0) and touches y-...

    Text Solution

    |

  11. The locus of the middle points of the focal chords of the parabola, y^...

    Text Solution

    |

  12. If the lsope of the focal chord of y^(2)=16x is 2, then the length of ...

    Text Solution

    |

  13. If x-2y-a=0 is a chord of the parabola y^(2)=4ax, then its langth, is

    Text Solution

    |

  14. Equation of normal to the parabola y^(2)=4x which passes through (3, 0...

    Text Solution

    |

  15. Find the length of normal chord which subtends an angle of 90^0 at the...

    Text Solution

    |

  16. At what point on the parabola y^2=4x the normal makes equal angle with...

    Text Solution

    |

  17. The circles on focal radii of a parabola as diameter touch

    Text Solution

    |

  18. Tangents are drawn at the ends of any focal chord of the parabola y^(2...

    Text Solution

    |

  19. The angle between the pair of tangents drawn form (1, 3) to the parabo...

    Text Solution

    |

  20. A variable tangent to the parabola y^(2)=4ax meets the parabola y^(2)=...

    Text Solution

    |