Home
Class 11
MATHS
If A; B are non singular square matrices...

If A; B are non singular square matrices of same order; then `adj(AB) = (adjB)(adjA)`

A

Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1.

C

Statement -1 is True, Statement -2 is False.

D

Statement -1 is False, Statement -2 is True.

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`(AB)(adj AB)=abs(AB)I …(i) [:' A (adj A)=absAI]`
`(AB) (adj B adj A)=A(B adj B) adjA`
`rArr (AB)(adjB adjA)=(A (absBI))adjA [:' B(adj B )=absBI]`
`rArr (AB)(adj B adj A)=absB(A adj A)`
`rArr (AB) (adj B adjA)=absBabsAI=abs(AB)I ...(ii)`
From (i) and (ii), we get
`:. adj(AB) =(adjB)(adjA)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A and B are any two square matrices of the same order than ,

Let A be a non-singular square matrix of order n. Then; |adjA| =

Knowledge Check

  • If A, B are two non-singular matrices of same order, then

    A
    AB is non - singular
    B
    AB is singular
    C
    `(AB)^(-1)=A^(-1)B^(-1)`
    D
    AB is not invertible
  • If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1)=

    A
    A) `CBA^(-1)`
    B
    B) `C^(-1)B^(-1)A^(-1)`
    C
    C) `C^(-1)BA^(-1)`
    D
    D) `C^(-1)BA`
  • If A and B are square matrices of same order, then (A+B) (A-B) is equal to

    A
    `A^(2)B^(2)`
    B
    `A^(2)=BA-AB+B^(2)`
    C
    `A^(2)-AB+BA-B^(2)`
    D
    `A^(2)+AB-BA-B^(2)`
  • Similar Questions

    Explore conceptually related problems

    If A and B are two square matrices of the same order, then A+B=B+A.

    If A and B are square matrices of order 3, then

    If A and B are non - singular matrices of order 3xx3 , such that A=(adjB) and B=(adjA) , then det (A)+det(B) is equal to (where det(M) represents the determinant of matrix M and adj M represents the adjoint matrix of matrix M)

    If A and B are any two square matrices of the same order then (A) (AB)^T=A^TB^T (B) (AB)^T=B^TA^T (C) Adj(AB)=adj(A)adj(B) (D) AB=0rarrA=0 or B=0

    Let A a non singular square matrix of order 3xx3 . Then |adjA| is equal to