Home
Class 11
MATHS
Let a be a 2xx2 matrix with non-zero ent...

Let a be a `2xx2` matrix with non-zero entries and let `A^(2)=I`, where `I` is a `2xx2` identity matrix. Define Tr(A)= sum of diagonal elements of A and |A| = determinant of matrix A.
Statement 1 : Tr `(A) = 0`
Statement 2 : `|A|=1`

A

Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1.

C

Statement -1 is True, Statement -2 is False.

D

Statement -1 is False, Statement -2 is True.

Text Solution

Verified by Experts

The correct Answer is:
C

Let `{:A=[(a,b),(c,d)]:}a,b,c,dne 0`. Then,
`{:A=[(a,b),(c,d)][(a,b),(c,d)]=[(a^2+bc,ab+bd),(ac+dc,bc+d^2)]:}`
`:. A^2=I`
`rArr a^2+bc=1,bc+d^2=1,ac+dc=0 andab+bd=0`
`rArr (a^2+bc)-(d^2+bc)=0,c(a+d)=0and (a+d)b=0`
`rArr a^2-b^2=0 and a+d=0 [:' b ne 0, c ne 0]`
`rarr a+d=0rArr Tr(A)=0`
So, statement -1 true.
`absA={:[(a,b),(c,d)]:}=ad-bc=-a^2-bc [:'d=-a]`
`rArr absA=-1 [:' a^2+bc=1]`
So, statement -2 is not true.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Let A be a 2 xx 2 matrix with non-zero entries and let A^2=I, where i is a 2 xx 2 identity matrix, Tr(A) i= sum of diagonal elements of A and |A| = determinant of matrix A. Statement 1:Tr(A)=0 Statement 2: |A| =1

Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identity matrix. Denote by tr (A), the sum of diagonal entries of A. Assume that A^2=""I . Statement 1: If A!=I and A!=""-I , then det A""=-1 . Statement 2: If A!=I and A!=""-I , then t r(A)!=0 . (1) Statement 1 is false, Statement ( 2) (3)-2( 4) is true (6) Statement 1 is true, Statement ( 7) (8)-2( 9) (10) is true, Statement ( 11) (12)-2( 13) is a correct explanation for Statement 1 (15) Statement 1 is true, Statement ( 16) (17)-2( 18) (19) is true; Statement ( 20) (21)-2( 22) is not a correct explanation for Statement 1. (24) Statement 1 is true, Statement ( 25) (26)-2( 27) is false.

Let A be a 2xx 2 matrix with real entries and det (A)= 2 . Find the value of det ( Adj(adj(A) )

Let A be 2 x 2 matrix.Statement I adj (adj A) = A Statement II |adj A| = |A|

if for a matrix A, A^2+I=O , where I is the identity matrix, then A equals

Let M be a 2xx2 symmetric matrix with integer entries. Then , M is invertible, if

Let A be any 3xx2 matrix. Then prove that det. (A A^(T))=0 .

Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(adjA) = abs(A)

Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I is the (2xx2 identity matrix). Then the product of all elements of matrix V is

Let A be any 3xx 2 matrix show that AA is a singular matrix.