Home
Class 11
MATHS
The inverse of the matrix {:[(1,3),(3,10...

The inverse of the matrix `{:[(1,3),(3,10)]:}` is equal to

A

`{:[(10,3),(3,1)]:}`

B

`{:[(10,-3),(-3,1)]:}`

C

`{:[(1,3),(3,10)]:}`

D

`{:[(-1,-3),(-3,-10)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 1 & 3 \\ 3 & 10 \end{pmatrix} \), we can follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 1 \) - \( b = 3 \) - \( c = 3 \) - \( d = 10 \) Calculating the determinant: \[ \text{det}(A) = (1)(10) - (3)(3) = 10 - 9 = 1 \] ### Step 2: Find the Adjoint of Matrix A The adjoint of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): - \( d = 10 \) - \( -b = -3 \) - \( -c = -3 \) - \( a = 1 \) Thus, the adjoint of \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} 10 & -3 \\ -3 & 1 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of a matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Substituting the values we found: \[ A^{-1} = \frac{1}{1} \begin{pmatrix} 10 & -3 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 10 & -3 \\ -3 & 1 \end{pmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 10 & -3 \\ -3 & 1 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Obtain the inverse of the matrix A=[{:(2,3),(1,1):}] using elementary operations.

Find the inverse of the matrix A= [(3,1),(4,2)]

Choose the correct answer from the following : The inverse of matrix |{:(1,3),(2,-1):}|is:

The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

Using elementry transformation, find the inverse of the matrix. [{:(,0,1,2),(,1,2,3),(,3,1,1,):}]

Find the inverse of the matrix [(3 ,-2 ),(-7 , 5)] .

Using elementary transformation find the inverse of the matrix : A=((1, -3,2),(3, 0, 1),(-2, -1, 0))

Find the inverse of the matrix |[2,-1], [3, 4]| .

Using elementary transformations, find the inverse of the matrix : [(2,0,-1),(5, 1, 0),(0, 1, 3)]

find the inverse of the following matrix : [{:(1,-1),(2,3):}]

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  2. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  3. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  4. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  5. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  8. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  9. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  10. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  11. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  12. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  13. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  14. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  15. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  16. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  17. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  18. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  19. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |

  20. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |