Home
Class 11
MATHS
If {:A=[(5,2),(3,1)]:}," then "A^(-1)=...

If `{:A=[(5,2),(3,1)]:}," then "A^(-1)=`

A

`{:[(1,-2),(-3,5)]:}`

B

`{:[(-1,2),(3,-5)]:}`

C

`{:[(-1,-2),(-3,-5)]:}`

D

`{:[(1,2),(3,5)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix: - \( a = 5 \) - \( b = 2 \) - \( c = 3 \) - \( d = 1 \) Calculating the determinant: \[ \text{det}(A) = (5)(1) - (2)(3) = 5 - 6 = -1 \] ### Step 2: Find the Adjoint of A The adjoint of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix: \[ \text{adj}(A) = \begin{pmatrix} 1 & -2 \\ -3 & 5 \end{pmatrix} \] ### Step 3: Calculate the Inverse of A The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-1} \cdot \begin{pmatrix} 1 & -2 \\ -3 & 5 \end{pmatrix} \] This simplifies to: \[ A^{-1} = \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

If A is a non-singular square matrix such that A^(-1)=[(5, 3),(-2,-1)] , then find (A^T)^(-1) .

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}], then verify that (I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'

If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identify matric of the same order and A^(t) is the transpose of matrix A, find A^(t) B+BI .

if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}], then show that (i) AB=A and BA=B.

If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}) , then A=

Let f(z) = |(5,3,8),(2,z,1),(1,2,z)| then f(5) is equal to

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  2. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  3. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  4. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  5. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  6. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  7. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  8. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  9. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  10. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  11. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  12. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  13. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  14. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  15. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  16. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |

  17. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |

  18. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  19. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  20. If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)...

    Text Solution

    |