Home
Class 11
MATHS
If {:A=[(3,1),(-1,2)]:}," then "A^(2)=...

If `{:A=[(3,1),(-1,2)]:}," then "A^(2)=`

A

`{:[(8,-5),(-5,3)]:}`

B

`{:[(8,-5),(5,3)]:}`

C

`{:[(8,-5),(-5,-3)]:}`

D

`{:[(8,5),(-5,3)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) where \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \), we will perform matrix multiplication of \( A \) with itself. ### Step 1: Write down the matrices We have: \[ A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] We need to compute \( A^2 = A \times A \). ### Step 2: Set up the multiplication To multiply two matrices, we use the formula: \[ C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \] where \( C \) is the resulting matrix, and \( n \) is the number of columns in \( A \) (or rows in \( B \)). Here, both matrices are \( 2 \times 2 \). ### Step 3: Calculate the elements of \( A^2 \) 1. **Element at (1,1)**: \[ C_{11} = (3 \times 3) + (1 \times -1) = 9 - 1 = 8 \] 2. **Element at (1,2)**: \[ C_{12} = (3 \times 1) + (1 \times 2) = 3 + 2 = 5 \] 3. **Element at (2,1)**: \[ C_{21} = (-1 \times 3) + (2 \times -1) = -3 - 2 = -5 \] 4. **Element at (2,2)**: \[ C_{22} = (-1 \times 1) + (2 \times 2) = -1 + 4 = 3 \] ### Step 4: Write the resulting matrix Combining all the calculated elements, we have: \[ A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \] ### Final Answer: Thus, \( A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[(3, 1),(-1 ,2)] , show that A^2-5A+7I=O . Hence, find A^(-1) .

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

If A=[{:(3,-1),(1,-3):}]" and B"=[{:(2,1),(-1,-2):}]," then show that" : (AB)^(-1)=B^(-1)A^(-1)

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

If A=[[3, 1],[-1, 2]] , show that A^2-5A+7I=0

If A=[(2,2,1),(1,3,1),(1,2,2)] and the sum of eigen values of A is m anda product of eigen values of A is n, then m+n is equal to

If A=[[3 ,1],[-1, 2]] , show that A^2-5A+7I^2=O .

If A=[[3, 1],[-1 ,2]] , show that A^2-5A+7I=O . Use this to find A^4

If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}] , then ("BB"^(T)A)^(5) is equal to

If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}] , then ("BB"^(T)A)^(5) is equal to

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  2. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  3. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  4. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  5. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  6. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  7. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  8. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  9. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  10. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  11. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  12. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  13. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  14. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |

  15. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |

  16. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  17. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  18. If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)...

    Text Solution

    |

  19. If A is a square matrix such that A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):...

    Text Solution

    |

  20. If n is a natural number. Then {:[(2,-1),(3,-2)]^n:}, is

    Text Solution

    |