Home
Class 11
MATHS
{:[(-6,5),(-7,6)]^(-1)=:}...

`{:[(-6,5),(-7,6)]^(-1)=:}`

A

`{:[(-6,5),(-7,6)]:}`

B

`{:[(6,-5),(-7,6)]:}`

C

`{:[(6,5),(7,6)]:}`

D

`{:[(6,-5),(7,-6)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} -6 & 5 \\ -7 & 6 \end{pmatrix} \), we will follow the steps outlined below: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = -6 \) - \( b = 5 \) - \( c = -7 \) - \( d = 6 \) Now, substituting these values into the determinant formula: \[ \text{det}(A) = (-6)(6) - (5)(-7) = -36 + 35 = -1 \] ### Step 2: Find the Adjoint of Matrix A The adjoint of a 2x2 matrix is given by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements. For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 6 & -5 \\ 7 & -6 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of a matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Substituting the values we found: \[ A^{-1} = \frac{1}{-1} \begin{pmatrix} 6 & -5 \\ 7 & -6 \end{pmatrix} = -1 \begin{pmatrix} 6 & -5 \\ 7 & -6 \end{pmatrix} = \begin{pmatrix} -6 & 5 \\ -7 & 6 \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -6 & 5 \\ -7 & 6 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to

Wherever possible write each of the following as a single matrix. (i) [{:(,1,2),(,3,4):}]+[{:(,-1,-2),(,1,-7):}] (ii) [{:(,2,3,4),(,5,6,7):}]-[{:(,0,2,3),(,6,-1,0):}] (iii) [{:(,0,1,2),(,4,6,7):}]+[{:(,3,4),(,6,8):}]

Show that the points (taken in order) (3,-2),(7,6),(-1,2),(-5,-6) form a rhombus.

Show that A=[(6, 5),( 7, 6)] satisfies the equation x^2-12 x+1=0 . Thus, find A^(-1)

Verify the following : {(-7)xx5}xx(-6)=(-7)xx{5xx(-6)}

Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not ? (i) R={(4,1),(5,1),(6,7)} (ii) R={(2,3),(2,5),(3,3),(6,6)} (iii) R={(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)} (iv) R={(1,1),(2,1),(3,1),(4,1),(5,1)}

If AxxB={(1,2),(1,3),(1,6),(7,2),(7,3),(7,6)} then find sets A and B.

Let R be a relation such that R = {(1,4), (3,7), (4,5), (4,6), (7,6)} , check R is a function or not ?

Let a relation R be defined by relation The R = {(4, 5), (1,4), (4, 6), (7, 6), (3,7)} R^(-1)oR is given by

Let a relation R be defined by relation The R = {(4, 5), (1,4), (4, 6), (7, 6), (3,7)} R^(-1)oR is given by

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  2. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  3. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  4. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  5. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  6. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  7. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  8. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  9. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  10. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  11. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |

  12. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |

  13. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  14. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  15. If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)...

    Text Solution

    |

  16. If A is a square matrix such that A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):...

    Text Solution

    |

  17. If n is a natural number. Then {:[(2,-1),(3,-2)]^n:}, is

    Text Solution

    |

  18. Given x=cy+bz,y=az+cx and that a^(2) +b^(2) +c^(2) +2abc =1.

    Text Solution

    |

  19. If A is a singular matrix, then A (adj A) is a

    Text Solution

    |

  20. If {:A=[(0,1),(1,0)]:},I is the unit matrix of order 2 and a, b are a...

    Text Solution

    |