Home
Class 11
MATHS
If the points (x1,y1),(x2,y2)and(x3,y3) ...

If the points `(x_1,y_1),(x_2,y_2)and(x_3,y_3)` are collinear, then the rank of the matrix `{:[(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)]:}` will always be less than

A

3

B

2

C

1

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If the points A (x,y),(-1,3)and(5,-3) ar collinear, then show that x + y = 2.

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the normals to the ellipse x^2/a^2+y^2/b^2= 1 at the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) are concurrent, prove that |(x_1,y_1,x_1y_1),(x_2,y_2,x_2y_2),(x_3,y_3,x_3y_3)|=0 .

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

Three points A(x_1 , y_1), B (x_2, y_2) and C(x, y) are collinear. Prove that: (x-x_1) (y_2 - y_1) = (x_2 - x_1) (y-y_1) .

An equilateral triangle has each side to a. If the coordinates of its vertices are (x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3)) then the square of the determinat |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| equals

If three points (x_1,y_1),(x_2, y_2),(x_3, y_3) lie on the same line, prove that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the join of (x_1,y_1) and (x_2,y_2) makes on obtuse angle at (x_3,y_3), then prove that (x_3-x_1)(x_3-x_2)+(y_3-y_1)(y_3-y_2)<0

If A(x_1, y_1),B(x_2, y_2) and C(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=3a^4

If A(x_1, y_1),B(x_2, y_2),C(x_3, y_3) are the vertices of a triangle, then the equation |x y1x_1y_1 1x_2y_3 1|+|x y1x_1y_1 1x_3y_3 1|=0 represents (a)the median through A (b)the altitude through A (c)the perpendicular bisector of B C (d)the line joining the centroid with a vertex

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  2. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  3. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  4. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  5. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  6. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  7. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  8. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  9. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  10. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |

  11. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |

  12. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  13. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  14. If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)...

    Text Solution

    |

  15. If A is a square matrix such that A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):...

    Text Solution

    |

  16. If n is a natural number. Then {:[(2,-1),(3,-2)]^n:}, is

    Text Solution

    |

  17. Given x=cy+bz,y=az+cx and that a^(2) +b^(2) +c^(2) +2abc =1.

    Text Solution

    |

  18. If A is a singular matrix, then A (adj A) is a

    Text Solution

    |

  19. If {:A=[(0,1),(1,0)]:},I is the unit matrix of order 2 and a, b are a...

    Text Solution

    |

  20. If {:A=[(cos theta,-sintheta),(sintheta,costheta)]:}, then which one o...

    Text Solution

    |