Home
Class 11
MATHS
If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA...

If `{:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)]:}`,then x + y =

A

6

B

-1

C

3

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) from the given matrices \( A \) and \( \text{adj} A \), and then compute \( x + y \). Given: \[ A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix} \] \[ \text{adj} A = \begin{pmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1 \end{pmatrix} \] ### Step 1: Calculate the determinant of matrix \( A \) The determinant of a \( 3 \times 3 \) matrix \( A \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For matrix \( A \): \[ \text{det}(A) = 1(3 \cdot 2 - 0 \cdot 1) - 2(2 \cdot 2 - 0 \cdot 0) + 2(2 \cdot 1 - 3 \cdot 0) \] Calculating each term: \[ = 1(6) - 2(4) + 2(2) \] \[ = 6 - 8 + 4 = 2 \] ### Step 2: Use the property of adjoint The property of adjoint states that: \[ \text{adj}(A) = \text{det}(A) \cdot A^{-1} \] From the properties of determinants, we also know that: \[ \text{adj}(A) = \text{det}(A) \cdot \text{adj}(A) \] This means that the sum of the elements in the adjoint matrix corresponding to the determinant can be used to find \( x \) and \( y \). ### Step 3: Relate the adjoint matrix to the determinant Since \( \text{det}(A) = 2 \), we can use the relation: \[ \text{adj}(A) = \text{det}(A) \cdot \text{Cofactor}(A) \] From the given adjoint matrix, we can equate the corresponding elements: \[ \begin{pmatrix} 6 & -2 & -6 \\ -4 & 2 & x \\ y & -1 & -1 \end{pmatrix} \] ### Step 4: Compare elements to find \( x \) and \( y \) From the adjoint matrix: - The element at position \( (2, 3) \) gives us \( x \). - The element at position \( (3, 1) \) gives us \( y \). We can directly use the values from the adjoint matrix: - From \( \text{adj}(A) \), we see that \( x = -6 \) and \( y = 2 \). ### Step 5: Calculate \( x + y \) Now we can find \( x + y \): \[ x + y = -6 + 2 = -4 \] ### Final Answer Thus, the value of \( x + y \) is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

If A=((2,2,-4),(-4,2,-4),(2,-1,5))and B=((1,-1,0),(2,3,4),(0,1,2)) , find AB. Hence, solve the following equations x-y=3,2x+3y+4z=17 and y+2z=7

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

Given A=[[1,-1, 0], [2, 3, 4], [0, 1, 2]], B= [[2,2,-4],[-4,2,-4],[2,-1,5]] find AB and use this to solve the system of equations: y+2x=7,x-y=3,2x+3y+4z=17

Find X if Y=[(3, 2),( 1, 4)] and 2X+Y=[(1, 0),(-3, 2)] .

Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8):}]

If 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) , then find the value of x+y.

Find x, y if [(-2,0),(3,1)][(-1),(2x)]+[(-2),(1)]=2[(y),(3)]

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  2. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  3. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  4. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  5. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  6. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  7. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  8. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  9. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  10. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |

  11. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |

  12. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  13. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  14. If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)...

    Text Solution

    |

  15. If A is a square matrix such that A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):...

    Text Solution

    |

  16. If n is a natural number. Then {:[(2,-1),(3,-2)]^n:}, is

    Text Solution

    |

  17. Given x=cy+bz,y=az+cx and that a^(2) +b^(2) +c^(2) +2abc =1.

    Text Solution

    |

  18. If A is a singular matrix, then A (adj A) is a

    Text Solution

    |

  19. If {:A=[(0,1),(1,0)]:},I is the unit matrix of order 2 and a, b are a...

    Text Solution

    |

  20. If {:A=[(cos theta,-sintheta),(sintheta,costheta)]:}, then which one o...

    Text Solution

    |