Home
Class 11
MATHS
If {:A=[(0,1),(1,0)]:},I is the unit mat...

If `{:A=[(0,1),(1,0)]:}`,I is the unit matrix of order 2 and a, b are arbitray constants, then `(aI +bA)^2` is equal to

A

`a^2I-abA`

B

`a^2I+2abA`

C

`a^2I+b^2A`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \((aI + bA)^2\) where \(A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\) and \(I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\). ### Step 1: Write down the expression We start with the expression: \[ (aI + bA)^2 \] ### Step 2: Substitute the matrices Substituting the values of \(I\) and \(A\): \[ aI + bA = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] This gives: \[ = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix} \] Now, we can add these two matrices: \[ = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \] ### Step 3: Square the resulting matrix Now we need to square the resulting matrix: \[ \left(\begin{pmatrix} a & b \\ b & a \end{pmatrix}\right)^2 \] Using the formula for matrix multiplication: \[ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} a & b \\ b & a \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ab + ab \\ ab + ab & b^2 + a^2 \end{pmatrix} \] This simplifies to: \[ = \begin{pmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{pmatrix} \] ### Final Result Thus, we have: \[ (aI + bA)^2 = \begin{pmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If I is a unit matrix of order 10 , then the determinant of I is equal to

If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h e r eI is the unit matrix of the name order as that of A , then th value of |9alpha| is equal to ________.

If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h e r eI is the unit matrix of the same order as that of A , then th value of |9alpha| is equal to ________.

If M=[{:(,1,2),(,2,1):}] and I is a unit matrix of the same order as that of M, show that M^2=2M+3I

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

If A^3 =O, then I+ A + A^2 = (where I is the unit matrix of order same as that of square matrix A) is equals (A) I -A (B) (I-A)^-1 (C) (I+A) (D) none of these

If A is a square matrix of order 2xx2 and B=[(1,2),(3, 4)] , such that AB=BA , then A can be

If A=[{:(,0,2),(,5,-2):}], B=[{:(,1,-1),(,3,2):}] and is a unit matrix of order 2 xx 2 find : (i) AB (ii) BA (iii) AI (Iv) A^2 (v) B^2A

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

If A is an invertble matrix of order 2 then (det A ^-1) is equal to- a.det A b.1/ det A c. 1 d. 0

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  2. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  3. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  4. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  5. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  6. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  7. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  8. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  9. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  10. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |

  11. If the points (x1,y1),(x2,y2)and(x3,y3) are collinear, then the rank o...

    Text Solution

    |

  12. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  13. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  14. If {:A=[(1,2,2),(2,3,0),(0,1,2)]and adjA=[(6,-2,-6),(-4,2,x),(y,-1,-1)...

    Text Solution

    |

  15. If A is a square matrix such that A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):...

    Text Solution

    |

  16. If n is a natural number. Then {:[(2,-1),(3,-2)]^n:}, is

    Text Solution

    |

  17. Given x=cy+bz,y=az+cx and that a^(2) +b^(2) +c^(2) +2abc =1.

    Text Solution

    |

  18. If A is a singular matrix, then A (adj A) is a

    Text Solution

    |

  19. If {:A=[(0,1),(1,0)]:},I is the unit matrix of order 2 and a, b are a...

    Text Solution

    |

  20. If {:A=[(cos theta,-sintheta),(sintheta,costheta)]:}, then which one o...

    Text Solution

    |