Home
Class 11
MATHS
If a hyperbola passes through a focus of...

If a hyperbola passes through a focus of the ellipse `(x^2)/(25)+(y^2)/(16)=1` and its transverse and conjugate axes coincide with major and minor axes of the ellipse, and the product of their eccentricityis 1, then

A

`(x^(2))/(9)-(y^(2))/(16)=1`

B

`(x^(2))/(16)-(y^(2))/(9)=-1`

C

`(x^(2))/(9)-(y^(2))/(25)=1`

D

none of these

Text Solution

Verified by Experts

Wehave, `e_(1)=sqrt(1-(16)/(25))=(3)/(5)`
`:.e_(1)e_(2)=1impliese_(2)=(5)/(3)`
The coordinates of foci of the ellipse are `(0,+-3)`.
Clearly, hyperbola in option `(b)` passes through `(0,+-3)` and has eccentricity `(5)/(3)`.
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|54 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos

Similar Questions

Explore conceptually related problems

If a hyperbola passes through foci of the ellipse x^2/5^2 + y^2/3^2 = 1 and its transverse and conjugate axes coincide with the major and minor axes of the ellipse and the product of their eccentricities is 1, then the product of length of semi transverse and conjugate axes of hyperbola is...

If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)/(16)=1 . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of a. hyperbola is (x^2)/9-(y^2)/(16)=1 b. the equation of hyperbola is (x^2)/9-(y^2)/(25)=1 c. focus of hyperbola is (5, 0) d. focus of hyperbola is (5sqrt(3),0)

If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)/(16)=1 . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of a. hyperbola is (x^2)/9-(y^2)/(16)=1 b. the equation of hyperbola is (x^2)/9-(y^2)/(25)=1 c. focus of hyperbola is (5, 0) d. focus of hyperbola is (5sqrt(3),0)

If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)/(16)=1 . Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of hyperbola is (x^2)/9-(y^2)/(16)=1 b. the equation of hyperbola is (x^2)/9-(y^2)/(25)=1 c. focus of hyperbola is (5, 0) d. focus of hyperbola is (5sqrt(3),0)

The Foci of the ellipse (x^(2))/(16)+(y^(2))/(25)=1 are

An ellipse passes through a focus of the hyperbola x^2/9 - y^2/16 = 1 and its major and minor axes coincide with the transverse and conjugate axes of the hyperbola and the product of eccentricities of ellipse and hyperbola is 1. Foci of the ellipse are (A) (+- 4, 0) (B) (+-3, 0) (C) (+-5, 0) (D) none of these

An ellipse passes through a focus of the hyperbola x^2/9 - y^2/16 = 1 and its major and minor axes coincide with the transverse and conjugate axes of the hyperbola and the product of eccentricities of ellipse and hyperbola is 1. Equation of ellipse is : (A) x^2/16 + y^2/9 =1 (B) x^2/25 + y^2/9 = 1 (C) x^2/25 + y^2/16 = 1 (D) none of these

An ellipse passes through a focus of the hyperbola x^2/9 - y^2/16 = 1 and its major and minor axes coincide with the transverse and conjugate axes of the hyperbola and the product of eccentricities of ellipse and hyperbola is 1. If l and l\' be the length of semi latera recta of ellipse and hyperbola, then ll\'= (A) 144/15 (B) 256/15 (C) 225/12 (D) none of these

The vertex of ellipse (x^(2))/(16)+(y^(2))/(25)=1 are :

The eccentricity of the ellipse (x^(2))/(16)+(y^(2))/(25) =1 is

OBJECTIVE RD SHARMA ENGLISH-HYPERBOLA-Chapter Test
  1. If a hyperbola passes through a focus of the ellipse (x^2)/(25)+(y^2)/...

    Text Solution

    |

  2. Find the value of m for which y=m x+6 is tangent to the hyperbola (x^2...

    Text Solution

    |

  3. The equation of the tangent to the hyperbola 4y^(2)=x^(2)-1 at the poi...

    Text Solution

    |

  4. The number of normals to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))...

    Text Solution

    |

  5. If e and e1 are the eccentricities of the hyperbola xy=c^(2) and x^(2)...

    Text Solution

    |

  6. A rectangular hyperbola with centre C, is intersect by a circle of rad...

    Text Solution

    |

  7. The equation of the pair of asymptotes of the hyperbola xy-4x+3y=0, is

    Text Solution

    |

  8. If the latus rectum of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=1 is...

    Text Solution

    |

  9. Chords of the hyperbola x^(2)-y^(2)=a^(2) touch the parabola y^(2)=4ax...

    Text Solution

    |

  10. Tangents drawn from the point (c, d) to the hyperbola (x^(2))/(a^(2))-...

    Text Solution

    |

  11. If the tangent at (h, k) on b^2x^2-a^2y^2=a^2b^2 cuts the auxiliary ci...

    Text Solution

    |

  12. If the chords of contact of tangents drawn from P to the hyperbola x^(...

    Text Solution

    |

  13. The tangent at a point P on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(...

    Text Solution

    |

  14. The mid-point of the chord intercepted by the hyperbola 9x^(2)-16y^(2)...

    Text Solution

    |

  15. Locus of P such that the chord of contact of P with respect to y^2=4ax...

    Text Solution

    |

  16. C is the center of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 The tangen...

    Text Solution

    |

  17. If lx+my+n=0 is a tangent to the rectangular hyperbola xy=c^(2), then

    Text Solution

    |

  18. A tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 cuts the ellipse ...

    Text Solution

    |

  19. The product of lengths of perpendicular from any point on the hyperbol...

    Text Solution

    |

  20. The angle between the asymptotes of the hyperbola 3x^(2)-y^(2)=3, is

    Text Solution

    |

  21. Find the area of the triangle formed by any tangent to the hyperbola (...

    Text Solution

    |