Home
Class 11
MATHS
If the chord joining the points (a secth...

If the chord joining the points `(a sectheta_1, b tantheta_1)` and `(a sectheta_2, b tantheta_2)` on the hyperbola `x^2/a^2-y^2/b^2=1` is a focal chord, then prove that `tan(theta_1/2)tan(theta_2/2)+(ke-1)/(ke+1)=0`, where `k=+-1`

A

`(1-e)/(1+e)`

B

`(e-1)/(e+1)`

C

`(e+1)/(e-1)`

D

`(1+e)/(1-e)`

Text Solution

AI Generated Solution

To prove that if the chord joining the points \((a \sec \theta_1, b \tan \theta_1)\) and \((a \sec \theta_2, b \tan \theta_2)\) on the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is a focal chord, then \( \tan\left(\frac{\theta_1}{2}\right) \tan\left(\frac{\theta_2}{2}\right) + \frac{ke - 1}{ke + 1} = 0 \), where \( k = \pm 1 \). ### Step-by-Step Solution 1. **Identify the Focus of the Hyperbola:** The foci of the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) are located at \( (ae, 0) \) and \( (-ae, 0) \), where \( e = \sqrt{1 + \frac{b^2}{a^2}} \). **Hint:** Remember that the eccentricity \( e \) is defined in terms of the semi-major and semi-minor axes. ...
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|54 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos

Similar Questions

Explore conceptually related problems

If the chord through the points (a sec theta, b tan theta) and (a sec phi, b tan phi) on the hyperbola x^2/a^2 - y^2/b^2 = 1 passes through a focus, prove that tan (theta/2) tan (phi/2) + (e-1)/(e+1) = 0 .

If (asectheta;btantheta) and (asecphi; btanphi) are the ends of the focal chord of x^2/a^2-y^2/b^2=1 then prove that tan(x/a)tan(phi/2)=(1-e)/(1+e)

If a chord joining P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha) on the hyperbola x^(2)-y^(2) =a^(2) is the normal at P, then tan alpha is (a) tan theta (4 sec^(2) theta+1) (b) tan theta (4 sec^(2) theta -1) (c) tan theta (2 sec^(2) theta -1) (d) tan theta (1-2 sec^(2) theta)

If (asectheta, btantheta) and (asecphi, btanphi) be two coordinate of the ends of a focal chord passing through (ae,0) of x^2/a^2-y^2/b^2=1 then tan(theta/2)tan(phi/2) equals to

If costheta=1/2 , find the value of (2sectheta)/(1+tan^2theta)

(tantheta+2)(2 tantheta+1) = 5 tantheta+ sec^(2)theta

Prove that : (tan theta)/(sectheta+1)-(tantheta)/(1-sectheta)=2cosec theta

Prove the following identities: (sectheta-tantheta)/(sectheta+tantheta)=1-2secthetatantheta+2tan^2theta

Prove the following identities: (1-sintheta)/(1+sintheta)= (sectheta-tantheta)^2

Prove that (1+sectheta-tantheta)/(1+sectheta+tantheta) = (1-sintheta)/(costheta)

OBJECTIVE RD SHARMA ENGLISH-HYPERBOLA-Chapter Test
  1. If the chord joining the points (a sectheta1, b tantheta1) and (a sect...

    Text Solution

    |

  2. Find the value of m for which y=m x+6 is tangent to the hyperbola (x^2...

    Text Solution

    |

  3. The equation of the tangent to the hyperbola 4y^(2)=x^(2)-1 at the poi...

    Text Solution

    |

  4. The number of normals to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))...

    Text Solution

    |

  5. If e and e1 are the eccentricities of the hyperbola xy=c^(2) and x^(2)...

    Text Solution

    |

  6. A rectangular hyperbola with centre C, is intersect by a circle of rad...

    Text Solution

    |

  7. The equation of the pair of asymptotes of the hyperbola xy-4x+3y=0, is

    Text Solution

    |

  8. If the latus rectum of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=1 is...

    Text Solution

    |

  9. Chords of the hyperbola x^(2)-y^(2)=a^(2) touch the parabola y^(2)=4ax...

    Text Solution

    |

  10. Tangents drawn from the point (c, d) to the hyperbola (x^(2))/(a^(2))-...

    Text Solution

    |

  11. If the tangent at (h, k) on b^2x^2-a^2y^2=a^2b^2 cuts the auxiliary ci...

    Text Solution

    |

  12. If the chords of contact of tangents drawn from P to the hyperbola x^(...

    Text Solution

    |

  13. The tangent at a point P on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(...

    Text Solution

    |

  14. The mid-point of the chord intercepted by the hyperbola 9x^(2)-16y^(2)...

    Text Solution

    |

  15. Locus of P such that the chord of contact of P with respect to y^2=4ax...

    Text Solution

    |

  16. C is the center of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 The tangen...

    Text Solution

    |

  17. If lx+my+n=0 is a tangent to the rectangular hyperbola xy=c^(2), then

    Text Solution

    |

  18. A tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 cuts the ellipse ...

    Text Solution

    |

  19. The product of lengths of perpendicular from any point on the hyperbol...

    Text Solution

    |

  20. The angle between the asymptotes of the hyperbola 3x^(2)-y^(2)=3, is

    Text Solution

    |

  21. Find the area of the triangle formed by any tangent to the hyperbola (...

    Text Solution

    |