Home
Class 11
MATHS
If the straight line xcosalpha+ysinalpha...

If the straight line `xcosalpha+ysinalpha=p` touches the curve `(x^2)/(a^2)-(y^2)/(b^2)=1` , then `p^2dot`

A

`a^(2)cos^(2)alpha-b^(2)sin^(2)alpha=p^(2)`

B

`a^(2)cos^(2)alpha-b^(2)sin^(2)alpha=p`

C

`a^(2)cos^(2)alpha+b^(2)sin^(2)alpha=p^(2)`

D

`a^(2)cos^(2)alpha+b^(2)sin^(2)alpha=p`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( p^2 \) given that the line \( x \cos \alpha + y \sin \alpha = p \) is tangent to the hyperbola defined by \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \). ### Step-by-Step Solution: 1. **Rewrite the Line Equation**: Start with the line equation: \[ x \cos \alpha + y \sin \alpha = p \] Rearranging gives: \[ y \sin \alpha = p - x \cos \alpha \] Dividing through by \( \sin \alpha \): \[ y = \frac{p}{\sin \alpha} - \frac{x \cos \alpha}{\sin \alpha} \] This can be expressed in slope-intercept form: \[ y = -\frac{\cos \alpha}{\sin \alpha} x + \frac{p}{\sin \alpha} \] 2. **Identify the Slope**: The slope \( m \) of the line is: \[ m = -\frac{\cos \alpha}{\sin \alpha} = -\cot \alpha \] 3. **Condition for Tangency**: For the line to be tangent to the hyperbola, the condition we need to satisfy is: \[ c^2 = a^2 m^2 - b^2 \] where \( c = \frac{p}{\sin \alpha} \) and \( m = -\cot \alpha \). 4. **Substituting Values**: Substitute \( c \) and \( m \) into the tangency condition: \[ \left(\frac{p}{\sin \alpha}\right)^2 = a^2 \left(-\cot \alpha\right)^2 - b^2 \] Simplifying \( m^2 \): \[ m^2 = \cot^2 \alpha = \frac{\cos^2 \alpha}{\sin^2 \alpha} \] Thus, the equation becomes: \[ \frac{p^2}{\sin^2 \alpha} = a^2 \frac{\cos^2 \alpha}{\sin^2 \alpha} - b^2 \] 5. **Clearing the Denominator**: Multiply through by \( \sin^2 \alpha \): \[ p^2 = a^2 \cos^2 \alpha - b^2 \sin^2 \alpha \] 6. **Final Result**: Therefore, the value of \( p^2 \) is: \[ p^2 = a^2 \cos^2 \alpha - b^2 \sin^2 \alpha \] ### Summary: The final answer is: \[ p^2 = a^2 \cos^2 \alpha - b^2 \sin^2 \alpha \]

To solve the problem, we need to determine the value of \( p^2 \) given that the line \( x \cos \alpha + y \sin \alpha = p \) is tangent to the hyperbola defined by \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \). ### Step-by-Step Solution: 1. **Rewrite the Line Equation**: Start with the line equation: \[ x \cos \alpha + y \sin \alpha = p ...
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|54 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos

Similar Questions

Explore conceptually related problems

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the line x cosalpha + y sin alpha = P touches the curve 4x^3=27ay^2 , then P/a=

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

If the line x Cos alpha+y Sin alpha=p touches x^(2)/a^(2)-y^(2)/b^(2)=1 then a^(2) Cos^(2)alpha-b^(2) Sin^(2)alpha=

If the straight line represented by x cos alpha + y sin alpha = p intersect the circle x^2+y^2=a^2 at the points A and B , then show that the equation of the circle with AB as diameter is (x^2+y^2-a^2)-2p(xcos alpha+y sin alpha-p)=0

Show that the locus of the mid-point of the segment intercepted between the axes of the variable line xcosalpha+ysinalpha = p then 1/(x^2)+1/(y^2)=4/(p^2), where p is a constant.

OBJECTIVE RD SHARMA ENGLISH-HYPERBOLA-Chapter Test
  1. If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^...

    Text Solution

    |

  2. Find the value of m for which y=m x+6 is tangent to the hyperbola (x^2...

    Text Solution

    |

  3. The equation of the tangent to the hyperbola 4y^(2)=x^(2)-1 at the poi...

    Text Solution

    |

  4. The number of normals to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))...

    Text Solution

    |

  5. If e and e1 are the eccentricities of the hyperbola xy=c^(2) and x^(2)...

    Text Solution

    |

  6. A rectangular hyperbola with centre C, is intersect by a circle of rad...

    Text Solution

    |

  7. The equation of the pair of asymptotes of the hyperbola xy-4x+3y=0, is

    Text Solution

    |

  8. If the latus rectum of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=1 is...

    Text Solution

    |

  9. Chords of the hyperbola x^(2)-y^(2)=a^(2) touch the parabola y^(2)=4ax...

    Text Solution

    |

  10. Tangents drawn from the point (c, d) to the hyperbola (x^(2))/(a^(2))-...

    Text Solution

    |

  11. If the tangent at (h, k) on b^2x^2-a^2y^2=a^2b^2 cuts the auxiliary ci...

    Text Solution

    |

  12. If the chords of contact of tangents drawn from P to the hyperbola x^(...

    Text Solution

    |

  13. The tangent at a point P on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(...

    Text Solution

    |

  14. The mid-point of the chord intercepted by the hyperbola 9x^(2)-16y^(2)...

    Text Solution

    |

  15. Locus of P such that the chord of contact of P with respect to y^2=4ax...

    Text Solution

    |

  16. C is the center of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 The tangen...

    Text Solution

    |

  17. If lx+my+n=0 is a tangent to the rectangular hyperbola xy=c^(2), then

    Text Solution

    |

  18. A tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 cuts the ellipse ...

    Text Solution

    |

  19. The product of lengths of perpendicular from any point on the hyperbol...

    Text Solution

    |

  20. The angle between the asymptotes of the hyperbola 3x^(2)-y^(2)=3, is

    Text Solution

    |

  21. Find the area of the triangle formed by any tangent to the hyperbola (...

    Text Solution

    |