Home
Class 11
MATHS
The normal to the rectangular hyperbola ...

The normal to the rectangular hyperbola `xy = 4` at the point `t_1` meets the curve again at the point `t_2` Then

A

`t_(2)=-(1)/(t_(1)^(3))`

B

`t_(1)=-(1)/(t_(2)^(3))`

C

`t_(2)^(3)=-(1)/(t_(1)^(3))`

D

`t_(2)=(1)/(t_(1)^(3))`

Text Solution

Verified by Experts

The equation of the normal at `(ct_(1),c//t_(1))` to the hyperbola `xy=c^(2)` is
`xt_(1)^(3)-yt_(1)-ct_(1)^(4)+c=0`
If this passes through `(ct_(2),(c )/(t_(2)))`, then
`ct_(2)t_(1)^(3)-(c )/(t_(2)t_(1)-ct_(1)^(4)+c=0`
`impliest_(2)^(2)t_(1)^(3)-t_(1)-t_(1)^(4)t_(2)+t_(2)=0`
`impliest_(1)^(3)t_(2)(t_(2)-t_(1))+(t_(2)-t_(1))=0`
`implies(t_(1)^(3)t_(2)+1)(t_(2)-t_(1))=0`
`impliest_(1)^(3)t_(2)+1=0` [` :' t_(2) ne t_(1)`]
`impliest_(2)=-1//t_(1)^(3)`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|54 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos

Similar Questions

Explore conceptually related problems

If the normal to the rectangular hyperbola xy = c^2 at the point 't' meets the curve again at t_1 then t^3t_1, has the value equal to

If the normal to the rectangular hyperbola xy = 4 at the point (2t, (2)/(t_(1))) meets the curve again at (2t_(2), (2)/(t_(2))) , then

If the normal to the rectangular hyperbola x y=c^2 at the point (c t ,c//t) meets the curve again at (c t^(prime),c//t '),t h e n t^3t^(prime)=1 (B) t^3t^(prime)=-1 (C) t.t^(prime)=1 (D) t.t^(prime)=-1

If the normal to the rectangular hyperbola x^(2) - y^(2) = 4 at a point P meets the coordinates axes in Q and R and O is the centre of the hyperbola , then

The normal to curve xy=4 at the point (1, 4) meets curve again at :

If the normal to the given hyperbola at the point (c t , c/t) meets the curve again at (c t^(prime), c/t^(prime)), then (A) t^3t^(prime)=1 (B) t^3t^(prime)=-1 (C) t t^(prime)=1 (D) t t^(prime)=-1

The normal to the parabola y^(2)=8ax at the point (2, 4) meets the parabola again at the point

The normal to the parabola y^(2)=8x at the point (2, 4) meets the parabola again at eh point

If the tangent to the curve 4x^(3)=27y^(2) at the point (3,2) meets the curve again at the point (a,b) . Then |a|+|b| is equal to -

Normals drawn to the hyperbola xy=2 at the point P(t_1) meets the hyperbola again at Q(t_2) , then minimum distance between the point P and Q is

OBJECTIVE RD SHARMA ENGLISH-HYPERBOLA-Chapter Test
  1. The normal to the rectangular hyperbola xy = 4 at the point t1 meets...

    Text Solution

    |

  2. Find the value of m for which y=m x+6 is tangent to the hyperbola (x^2...

    Text Solution

    |

  3. The equation of the tangent to the hyperbola 4y^(2)=x^(2)-1 at the poi...

    Text Solution

    |

  4. The number of normals to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))...

    Text Solution

    |

  5. If e and e1 are the eccentricities of the hyperbola xy=c^(2) and x^(2)...

    Text Solution

    |

  6. A rectangular hyperbola with centre C, is intersect by a circle of rad...

    Text Solution

    |

  7. The equation of the pair of asymptotes of the hyperbola xy-4x+3y=0, is

    Text Solution

    |

  8. If the latus rectum of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=1 is...

    Text Solution

    |

  9. Chords of the hyperbola x^(2)-y^(2)=a^(2) touch the parabola y^(2)=4ax...

    Text Solution

    |

  10. Tangents drawn from the point (c, d) to the hyperbola (x^(2))/(a^(2))-...

    Text Solution

    |

  11. If the tangent at (h, k) on b^2x^2-a^2y^2=a^2b^2 cuts the auxiliary ci...

    Text Solution

    |

  12. If the chords of contact of tangents drawn from P to the hyperbola x^(...

    Text Solution

    |

  13. The tangent at a point P on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(...

    Text Solution

    |

  14. The mid-point of the chord intercepted by the hyperbola 9x^(2)-16y^(2)...

    Text Solution

    |

  15. Locus of P such that the chord of contact of P with respect to y^2=4ax...

    Text Solution

    |

  16. C is the center of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 The tangen...

    Text Solution

    |

  17. If lx+my+n=0 is a tangent to the rectangular hyperbola xy=c^(2), then

    Text Solution

    |

  18. A tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 cuts the ellipse ...

    Text Solution

    |

  19. The product of lengths of perpendicular from any point on the hyperbol...

    Text Solution

    |

  20. The angle between the asymptotes of the hyperbola 3x^(2)-y^(2)=3, is

    Text Solution

    |

  21. Find the area of the triangle formed by any tangent to the hyperbola (...

    Text Solution

    |