Home
Class 11
MATHS
If a variable straight line x cos alpha+...

If a variable straight line `x cos alpha+y sin alpha=p` which is a chord of hyperbola `(x^(2))/(a^(2))=(y^(2))/(b^(2))=1 (b gt a)` subtends a right angle at the centre of the hyperbola, then it always touches a fixed circle whose radius, is (a) `(sqrt(a^2+b^2))/(ab)` (b) `(2ab)/(sqrt(a^2+b^2))` (c) `(ab)/(sqrt(b^2-a^2))` (d) `(sqrt(a^2+b^2))/(2ab)`

A

`(ab)/(sqrt(b-2a))`

B

`(a)/(a-b)`

C

`(ab)/(sqrt(b^(2)-a^(2)))`

D

`(ab)/(sqrt(b+a))`

Text Solution

Verified by Experts

The combined equation of the straight lines joining, the centre of the hyperbola of the points of intersection of the line `x cosalpha+ysinalpha=p` and the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` is
`(x^(2))/(a^(2))-(y^(2))/(b^(2))=((xcosalpha+ysinalpha)/(p))^(2)`
This is equation will represent a pair of perpendicular straight lines, if
`(1)/(a^(2))-(cos^(2)alpha)/(p^(2))-(1)/(b^(2))-(sin^(2)alpha)/(p^(2))=0impliesp=(ab)/(sqrt(b^(2)-a^(2)))`
Substituting the value of `p` in `x cosalpha+ysinalpha=p`, we get
`x cosalpha+ysinalpha=(ab)/(sqrt(b^(2)-a^(2)))`
Clearly, it touches the circle `x^(2)+y^(2)=(-(ab)/(sqrt(b^(2))-a^(2))^(2))`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|56 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos

Similar Questions

Explore conceptually related problems

The locus of the poles of the chords of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 which subtend a right angle at its centre is

The chord of the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1 , whose equation is x cos alpha +y sin alpha =p , subtends a right angle at its centre. Prove that it always touches a circle of radius (ab)/sqrt(a^(2)-b^(2))

The condition that the line x cos alpha + y sin alpha =p to be a tangent to the hyperbola x^(2)//a^(2) -y^(2)//b^(2) =1 is

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the line x Cos alpha+y Sin alpha=p touches x^(2)/a^(2)-y^(2)/b^(2)=1 then a^(2) Cos^(2)alpha-b^(2) Sin^(2)alpha=

A variable chord of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(b > a), subtends a right angle at the center of the hyperbola if this chord touches. a fixed circle concentric with the hyperbola a fixed ellipse concentric with the hyperbola a fixed hyperbola concentric with the hyperbola a fixed parabola having vertex at (0, 0).

OBJECTIVE RD SHARMA ENGLISH-HYPERBOLA-Section I - Solved Mcqs
  1. The normal at P to a hyperbola of eccentricity e, intersects its trans...

    Text Solution

    |

  2. An ellipse intersects the hyperbola 2x^(2)-2y^(2)=1 orthogonally. The ...

    Text Solution

    |

  3. If a variable straight line x cos alpha+y sin alpha=p which is a chord...

    Text Solution

    |

  4. If H(x,y)=0 represents the equation of a hyperbola and A(x,y)=0, C(x,y...

    Text Solution

    |

  5. The equation of a tangent to the hyperbola 16x^2-25y^2-96x+100y-356=0,...

    Text Solution

    |

  6. The point of intersection of two tangents to the hyperbola (x^2)/(a^2)...

    Text Solution

    |

  7. Let A and B be two fixed points and P, another point in the plane, mov...

    Text Solution

    |

  8. The equation of the line passing through the centre of rectangular hyp...

    Text Solution

    |

  9. Radii of director circles of curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 ...

    Text Solution

    |

  10. A variable straight line of slope 4 intersects the hyperbola xy=1 at t...

    Text Solution

    |

  11. If P(a sec alpha,b tan alpha)" and "Q(a sec beta, b tan beta) are two ...

    Text Solution

    |

  12. If the tangents drawn from a point on the hyperbola x^2-y^2=a^2-b^2 to...

    Text Solution

    |

  13. The locus of the point of intersection of the tangents at the end-poin...

    Text Solution

    |

  14. Find the product of the length of perpendiculars drawn from any point ...

    Text Solution

    |

  15. The length of the transverse axis of the rectangular hyperbola x y=18 ...

    Text Solution

    |

  16. Find the eccentricity of the hyperbola with asymptotes 3x+4y=2 and 4x-...

    Text Solution

    |

  17. The foci of a hyperbola are (-5,12) and (10,20) and it touches the y-...

    Text Solution

    |

  18. The locus of the foot of the normal drawn from any point P(alpha, beta...

    Text Solution

    |

  19. The circle x^(2)+y^(2)-8x=0 and hyperbola (x^(2))/(9)-(y^(2))/(4)=1 in...

    Text Solution

    |

  20. The circle x^2+y^2-8x = 0 and hyperbola x^2 /9 - y^2 /4=1 intersect at...

    Text Solution

    |