Home
Class 11
MATHS
The point of intersection of two tangent...

The point of intersection of two tangents to the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` , the product of whose slopes is `c^2,` lies on the curve: `y^2-b^2=c^2(x^2+a^2)` (B) `y^2+a^2=c^2(x^2-b^2)` (C) `y^2+b^2=c^2(x^2-a^2)` (D) `y^2-a^2=c^2(x^2+b^2)`

A

`y^(2)-b^(2)=c^(2)(x^(2)+a^(2))`

B

`y^(2)+a^(2)=c^(2)(x^(2)-b^(2))`

C

`y^(2)+b^(2)=c^(2)(x^(2)-a^(2))`

D

`y^(2)-a^(2)=c^(2)(x^(2)+b^(2))`

Text Solution

Verified by Experts

Let `P(h,k)` be the point of intersection of two tangents to the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`.
The equation of any tangent to the hyperbola is
`y=mx+sqrt(a^(2)m^(2)-b^(2))`
If it passes through `P(h,k)` then
`k=mh+sqrt(a^(2)+m^(2)-b^(2))`
`implies(k-mh)^(2)=a^(2)m^(2)-b^(2)`
`impliesm^(2)(h^(2)-a^(2))-2mhk+(k^(2)+b^(2))=0`.........`(i)`
Let `m_(1)` and `m_(2)` be the slopes of the tangents passing through `P`. Then, `m_(1)`, `m_(2)` are the roots of the equation `(i)`
`:.m_(1)m_(2)=(k^(2)+b^(2))/(h^(2)-a^(2))`
`impliesc^(2)=(k^(2)+b^(2))/(h^(2)-a^(2))implies(h^(2)-a^(2))c^(2)=k^(2)+b^(2)` [` :' m_(1)m_(2)=c^(2)`]
Hence, `P(h,k)` lies on `(x^(2)-a^(2))c^(2)=y^(2)+b^(2)`.
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|56 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos

Similar Questions

Explore conceptually related problems

Length of common tangents to the hyperbolas x^2/a^2-y^2/b^2=1 and y^2/a^2-x^2/b^2=1 is

If a x+b y=1 is tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then a^2-b^2 is equal to (A) 1/(a^2e^2) (B) a^2e^2 (C) b^2e^2 (D) none of these

If a x+b y=1 is tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then a^2-b^2 is equal to (a) 1/(a^2e^2) (b) a^2e^2 (c) b^2e^2 (d) none of these

The condition that the line y=mx+c may be a tangent to (y^(2))/(a^(2))-x^(2)/b^(2)=1 is

The product of the perpendicular from two foci on any tangent to the hyperbola x^2/a^2-y^2/b^2=1 is (A) a^2 (B) (b/a)^2 (C) (a/b)^2 (D) b^2

The locus of the middle points of the portions of the tangents of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 included between the axis is the curve (a)    (x^2)/(a^2)+(y^2)/(b^2)=1/4 (b)    (a^2)/(x^2)+(b^2)/(y^2)=4 (c)    a^2x^2+b^2y^2=4 (d)    b^2x^2+a^2y^2=4

If e and e' are the eccentricities of the hyperbola x^2/a^2-y^2/b^2=1 and y^2/b^2-x^2/a^2=1, then the point (1/e,1/(e')) lies on the circle (A) x^2+y^2=1 (B) x^2+y^2=2 (C) x^2+y^2=3 (D) x^2+y^2=4

Which of the following can be slope of tangent to the hyperbola 4x^2-y^2=4? (a) 1 (b) -3 (c) 2 (d) -3/2

The locus of the poles of the tangents to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 w.r.t. the circle x^2 + y^2 = a^2 is: (a) parabola (b) ellipse (c) hyperbola (d) circle

Locus of all such points from where the tangents drawn to the ellipse x^2/a^2 + y^2/b^2 = 1 are always inclined at 45^0 is: (A) (x^2 + y^2 - a^2 - b^2)^2 = (b^2 x^2 + a^2 y^2 - 1) (B) (x^2 + y^2 - a^2 - b^2)^2 = 4(b^2 x^2 + a^2 y^2 - 1) (C) (x^2 + y^2 - a^2 - b^2)^2 = 4(a^2 x^2 + b^2 y^2 - 1) (D) none of these

OBJECTIVE RD SHARMA ENGLISH-HYPERBOLA-Section I - Solved Mcqs
  1. If H(x,y)=0 represents the equation of a hyperbola and A(x,y)=0, C(x,y...

    Text Solution

    |

  2. The equation of a tangent to the hyperbola 16x^2-25y^2-96x+100y-356=0,...

    Text Solution

    |

  3. The point of intersection of two tangents to the hyperbola (x^2)/(a^2)...

    Text Solution

    |

  4. Let A and B be two fixed points and P, another point in the plane, mov...

    Text Solution

    |

  5. The equation of the line passing through the centre of rectangular hyp...

    Text Solution

    |

  6. Radii of director circles of curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 ...

    Text Solution

    |

  7. A variable straight line of slope 4 intersects the hyperbola xy=1 at t...

    Text Solution

    |

  8. If P(a sec alpha,b tan alpha)" and "Q(a sec beta, b tan beta) are two ...

    Text Solution

    |

  9. If the tangents drawn from a point on the hyperbola x^2-y^2=a^2-b^2 to...

    Text Solution

    |

  10. The locus of the point of intersection of the tangents at the end-poin...

    Text Solution

    |

  11. Find the product of the length of perpendiculars drawn from any point ...

    Text Solution

    |

  12. The length of the transverse axis of the rectangular hyperbola x y=18 ...

    Text Solution

    |

  13. Find the eccentricity of the hyperbola with asymptotes 3x+4y=2 and 4x-...

    Text Solution

    |

  14. The foci of a hyperbola are (-5,12) and (10,20) and it touches the y-...

    Text Solution

    |

  15. The locus of the foot of the normal drawn from any point P(alpha, beta...

    Text Solution

    |

  16. The circle x^(2)+y^(2)-8x=0 and hyperbola (x^(2))/(9)-(y^(2))/(4)=1 in...

    Text Solution

    |

  17. The circle x^2+y^2-8x = 0 and hyperbola x^2 /9 - y^2 /4=1 intersect at...

    Text Solution

    |

  18. Let the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Suppose an ellipse and a hyperbola have the same pair of foci on the x...

    Text Solution

    |