Home
Class 11
MATHS
The locus of the foot of the normal draw...

The locus of the foot of the normal drawn from any point `P(alpha, beta)` to the family of circles `x^(2)+y^(2)-2gx+c=0`, where g is a parameter, is

A

`((5pi)/(6),(7pi)/(6))`

B

`(0,(pi)/(6))`

C

`((11pi)/(6),2pi)`

D

all of these

Text Solution

Verified by Experts

The equation of the hyperbola is `xy=c^(2)`, where `c=2sintehta`. The equation of any tangent to it is `(x)/(t)+yt=x`. If it is normal to each member of the family of circles, it must pass through the centre of each circle i.e. `(1,1)`.
`:.(1)/(t)+t=2cimpliest^(2)-2ct+1=0`
This will have non-real roots, if
`4c^(2)-4 lt 0`
`impliesc^(2)-1 lt 0`
`implies-1 lt c lt 1`
`implies-(1)/(2) lt sintheta lt (1)/(2)` [ `:'c=2sinetheta`]
`impliestheta in (theta,pi//6)uu(5pi//6,7pi//6)uu(11pi//6,2pi)`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|56 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos

Similar Questions

Explore conceptually related problems

Find the locus of the feet of the perpendiculars drawn from the point (b, 0) on tangents to the circle x^(2) + y^(2) =a^(2)

The locus of the foot of the perpendicular drawn from the origin to any chord of the circle x^(2)+y^(2)+2gx+2fy+c=0 which substents a right angle at the origin is

The range of g so that we have always a chord of contact of tangents drawn from a real point (alpha, alpha) to the circle x^(2)+y^(2)+2gx+4y+2=0 , is

The locus of the foot of the perpendicular from the foci an any tangent to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The equation of the locus of the foot of perpendicular drawn from (5, 6) on the family of lines (x-2)+lambda(y-3)=0 (where lambda in R ) is

The locus of the foot of prependicular drawn from the center of the ellipse x^(2)+3y^(2)=6 on any tangent to it is

Find the locus of the foot of the perpendicular drawn from the center upon any tangent to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1.

I If a point (alpha, beta) lies on the circle x^2 +y^2=1 then the locus of the point (3alpha.+2, beta), is

A line is drawn through a fix point P( alpha, beta ) to cut the circle x^2 + y^2 = r^2 at A and B. Then PA.PB is equal to :

A line is drawn through a fix point P( alpha, beta ) to cut the circle x^2 + y^2 = r^2 at A and B. Then PA.PB is equal to :

OBJECTIVE RD SHARMA ENGLISH-HYPERBOLA-Section I - Solved Mcqs
  1. The locus of the point of intersection of the tangents at the end-poin...

    Text Solution

    |

  2. Find the product of the length of perpendiculars drawn from any point ...

    Text Solution

    |

  3. The length of the transverse axis of the rectangular hyperbola x y=18 ...

    Text Solution

    |

  4. Find the eccentricity of the hyperbola with asymptotes 3x+4y=2 and 4x-...

    Text Solution

    |

  5. The foci of a hyperbola are (-5,12) and (10,20) and it touches the y-...

    Text Solution

    |

  6. The locus of the foot of the normal drawn from any point P(alpha, beta...

    Text Solution

    |

  7. The circle x^(2)+y^(2)-8x=0 and hyperbola (x^(2))/(9)-(y^(2))/(4)=1 in...

    Text Solution

    |

  8. The circle x^2+y^2-8x = 0 and hyperbola x^2 /9 - y^2 /4=1 intersect at...

    Text Solution

    |

  9. Let the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Suppose an ellipse and a hyperbola have the same pair of foci on the x...

    Text Solution

    |

  12. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |

  13. If ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and hyperbola (x^(2))/(144)-...

    Text Solution

    |

  14. Consider the hyperbola H:x^2-y^2=1 and a circle S with centre N(x2,0) ...

    Text Solution

    |

  15. The angle between pair of tangents to the curve 7x^(2)-12y^(2)=84 from...

    Text Solution

    |

  16. Consider the chords of the parabola y^(2)=4x which touches the hyperbo...

    Text Solution

    |

  17. There exist two points P and Q on the hyperbola (x^(2))/(a^(2))-(y^(2)...

    Text Solution

    |

  18. If four points be taken on a rectangular hyperbola such that the chord...

    Text Solution

    |

  19. A hyperbola whose transverse axis is along the major axis of the conic...

    Text Solution

    |

  20. The equation of the hyperbola whose foci are (-2, 0) and (2,0) and ecc...

    Text Solution

    |