Home
Class 11
MATHS
Statement-1 : If 5//3 is the eccentricit...

Statement-`1` : If `5//3` is the eccentricity of a hyperbola, then the eccentricity of its conjugate hyperbola is `5//4`.
Statement-`2` : If `e` and `e'` are the eccentricities of hyperbolas `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` and `(x^(2))/(a^(2))-(y^(2))/(b^(2))=-1` respectively, then `(1)/(e^(2))+(1)/(e'^(2))=1`.

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

AI Generated Solution

To solve the problem, we need to analyze both statements and verify their correctness step by step. ### Step 1: Understand the eccentricity of hyperbolas The eccentricity \( e \) of a hyperbola given by the equation \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|56 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|54 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos

Similar Questions

Explore conceptually related problems

the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(25)=1 is

If the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1and(y^(2))/(b^(2))-(x^(2))/(a^(2))=1" are "e_(1)ande_(2) respectively then prove that : (1)/(e_(1)^(2))+(1)/(e_(2)^(2))=1

If e_(1)ande_(2) be the eccentricities of the ellipses (x^(2))/(a^(2))+(y^(2))/(b^(2))=1and(x^(2))/(a^(2))+(4y^(2))/(b^(2))=1 respectively then prove that 3=4e_(2)^(2)-e_(1)^(2) .

Find the eccentricity of hyperbola x^(2)-9y^(2)=1 .

Statement-I If eccentricity of a hyperbola is 2, then eccentricity of its conjugate hyperbola is (2)/(sqrt(3)) . Statement-II if e and e_1 are the eccentricities of two conjugate hyperbolas, then ee_1gt1 .

The eccentricity of the hyperbola x^(2)-y^(2)=9 is

The eccentricity of the hyperbola 3x^(2)-4y^(2)=-12 is

Find the eccentricity of the hyperbola 9y^(2)-4x^(2)=36

If e_(1) and e_(2) are eccentricities of the hyperbolas xy=c^(2) and x^2-y^(2)=a^(2) then e_(1)^(2)+e_(2)^(2)=

If e' is the eccentricity of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 (a gt b) , then