Home
Class 11
MATHS
Prove that the locus of the centroid of ...

Prove that the locus of the centroid of the triangle whose vertices are `(acost ,asint),(bsint ,-bcost),` and `(1,0)` , where `t` is a parameter, is circle.

A

Statement -1 is True , Statement - 2 is true , Statement- 2 is a correct explanation for statement - 7

B

Statement-1 is True , Statement-2 is True , Statement -2 is not a correct explanation for Statement - 1 .

C

Statement-1 is True , Statement - 2 is False .

D

Statement - 1 is False , Statement -2 is True .

Text Solution

Verified by Experts

The correct Answer is:
B

Let (h , k ) be the coordinates of the centroid of the given triangle . Then ,
`3h = a cos theta + b sin theta + 1 and 3 k = a sin theta - b cos theta `
`implies (3h-1)^(2) + (3k)^(2) = a^(2) + b^(2)`
`therefore` Locus of (h , k) is `(3x - 1)^(2) + (3y)^(2) = a^(2) + b^(2)`
So , statement - 1 is true .
Statement - 2 , being a geometrical result , is also true . But , statement-2 is not a correct explanation for statement - 1 .
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise SECTION - II (ASSERTION - REASON TYPE MCQs|1 Videos
  • STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|130 Videos
  • STRAIGHT LINES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section-1 Solved MCQs (Example)|1 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Locus of centroid of the triangle whose vertices are (a cos t, a sin t ) , (b sin t - b cos t ) and (1, 0) where t is a parameter, is

Equation of the locus of the centroid of the triangle whose vertices are (a cos k, a sin k),(b sin k, -b cos k) and (1,0) , where k is a perameter, is

Locus of centroid of the triangle whose vertices are (acost ,asint),(bsint,-bcost)a n d(1,0), where t is a parameter is: (3x-1)^2+(3y)^2=a^2-b^2 (3x-1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2-b^2

The centroid of a triangle whose vertices are (1,1,1) (-2,4,1) (2,2,5)

Find the centroid of the triangle whose vertices are A(-1,0), B(5, -2) and C(8, 2).

The incentre of the triangle whose vertices are (-36, 7), (20, 7) and (0, -8) is

Find the area of the triangle whose vertices are: (1,0),(6,0),(4,3)

The orthocentre of the triangle whose vertices are (1, 1), (5, 1) and (4, 5) is

Find the coordinates of the orthocentre of the triangle whose vertices are (0, 1), (2, -1) and (-1, 3)

Find the orthocentre of the triangle whose vertices are (0, 0), (6, 1) and (2, 3).