Home
Class 11
MATHS
If (log)2(5xx2^(1-x)+1) , log4(2^(1-x)+1...

If `(log)_2(5xx2^(1-x)+1)` , `log_4(2^(1-x)+1) ` and 1 are in A.P., then `x` equals a. `log_2 5` b. `1-log_5 2` c. `log_5 2` d. none of these

A

`log_(2)5`

B

`1-log_(2)5`

C

`log_(5)2`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

The given number are in A.P.
`:." "2log_(4)(2^(1-x)+1)=log_(2)(5.2^(x)+1)+1`
`rArr" "2log_(2)2((2)/(2^(x))+1)=log_(2)(5.2^(x)+1)+log_(2)2`
`rArr" "(2)/(2)log_(2)((2)/(2^(x))+1)=log_(2)(5.2^(x)+1)2`
`rArr" "log_(2)((2)/(2^(x))+1)=log_(2)(10.2^(x)+2)`
`rArr" "(2)/(2^(x))+1=10.2^(x)+2`
`rArr" "(2)/(y)+1=10y+2," where"2^(x)=y`
`:." "10y^(2)+y-2=0`
`rArr" "(5y-2)(2y+1)=0`
`rArr" "y=2//5" "[becausey=2^(x)gt0]`
`rArr" "2^(x)=2//5rArrx=log_(2)(2//5)=log_(2)2-log_(2)5=1-log_(2)5`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

Knowledge Check

  • If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

    A
    A. `log_(5)2`
    B
    B. `log_(2)5`
    C
    C. `log_(2)3`
    D
    D. `log_(3)2`
  • Similar Questions

    Explore conceptually related problems

    If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

    If 1,log_9(3^(1-x)+2), log_3(4*3^x-1) are in A.P then x equals to

    int_0^oo1/(1+e^x)dx equals a. log2-1 b. log2 c. log4-1 d. log2

    Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .

    Solve log_(2)(25^(x+3)-1) = 2 + log_(2)(5^(x+3) + 1) .

    If log_5(5^(1/x)+125)=log_5 6+1+1/(2x) , then x =

    If log2,log(2^x-1),log(2^x+3) are in A.P., write the value of xdot