Home
Class 11
MATHS
If the expression exp {1+|cosx|+cos^(2)...

If the expression exp `{1+|cosx|+cos^(2)x+|cos^(3)x|+ . . . . oo)log_(e)4}` satisfies the equation `y^(2)-20y+64=0" for "0ltxltpi`, then the set of value of x is

A

`{pi//3,2pi//3}`

B

`{pi//2,pi//2}`

C

`{pi//2,0,2pi//3}`

D

`{pi//3,pi//2,2pi//3}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given expression and the quadratic equation separately. ### Step 1: Analyze the Infinite Series The expression given is: \[ \exp \left( 1 + |\cos x| + \cos^2 x + |\cos^3 x| + \ldots \right) \log_e 4 \] The series inside the exponential can be expressed as: \[ S = 1 + |\cos x| + \cos^2 x + |\cos^3 x| + \ldots \] This series can be split into two parts based on whether \( \cos x \) is positive or negative. However, since we are taking the absolute value, we can treat it as a geometric series. ### Step 2: Identify the Geometric Series The series can be rewritten as: \[ S = 1 + |\cos x| + |\cos x|^2 + |\cos x|^3 + \ldots \] This is a geometric series with the first term \( a = 1 \) and common ratio \( r = |\cos x| \). ### Step 3: Sum of the Geometric Series The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} = \frac{1}{1 - |\cos x|} \] for \( |r| < 1 \). Therefore, \[ S = \frac{1}{1 - |\cos x|} \] ### Step 4: Substitute Back into the Exponential Now substituting \( S \) back into the exponential, we have: \[ \exp\left( \frac{1}{1 - |\cos x|} \right) \log_e 4 \] ### Step 5: Set Up the Quadratic Equation The problem states that this expression satisfies the equation: \[ y^2 - 20y + 64 = 0 \] ### Step 6: Solve the Quadratic Equation To solve the quadratic equation, we can use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -20, c = 64 \): \[ y = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 1 \cdot 64}}{2 \cdot 1} \] \[ y = \frac{20 \pm \sqrt{400 - 256}}{2} \] \[ y = \frac{20 \pm \sqrt{144}}{2} \] \[ y = \frac{20 \pm 12}{2} \] Thus, the solutions are: \[ y = \frac{32}{2} = 16 \quad \text{and} \quad y = \frac{8}{2} = 4 \] ### Step 7: Set Up the Exponential Equations Now we have two cases: 1. \( \exp\left( \frac{1}{1 - |\cos x|} \right) \log_e 4 = 4 \) 2. \( \exp\left( \frac{1}{1 - |\cos x|} \right) \log_e 4 = 16 \) ### Step 8: Solve Each Case **Case 1:** \[ \exp\left( \frac{1}{1 - |\cos x|} \right) = 1 \] This implies: \[ \frac{1}{1 - |\cos x|} = 0 \Rightarrow 1 - |\cos x| \to \infty \text{ (not possible)} \] **Case 2:** \[ \exp\left( \frac{1}{1 - |\cos x|} \right) = 4 \] This implies: \[ \frac{1}{1 - |\cos x|} = \log_e 4 \] Thus, \[ 1 - |\cos x| = \frac{1}{\log_e 4} \] So, \[ |\cos x| = 1 - \frac{1}{\log_e 4} \] ### Step 9: Find Values of \( x \) Now we can find \( x \) such that: 1. \( |\cos x| = 0 \) gives \( x = \frac{\pi}{2} \) 2. \( |\cos x| = \frac{1}{2} \) gives \( x = \frac{\pi}{3}, \frac{5\pi}{3} \) (but only \( \frac{5\pi}{3} \) is valid in \( (0, \pi) \)) Thus, the possible values of \( x \) are: - \( x = \frac{\pi}{2} \) - \( x = \frac{\pi}{3} \) - \( x = \frac{2\pi}{3} \) ### Final Answer The set of values of \( x \) is: \[ \left\{ \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3} \right\} \]

To solve the problem step by step, we will analyze the given expression and the quadratic equation separately. ### Step 1: Analyze the Infinite Series The expression given is: \[ \exp \left( 1 + |\cos x| + \cos^2 x + |\cos^3 x| + \ldots \right) \log_e 4 \] ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the equation y^(2)-9y+8=0 , then the value of (cos x )/( cos x+ sin x ),0 lt x lt (pi)/(2) , is

If 0ltxlt(pi)/(2) exp [(sin^(2)x+sin^(4)x+sin^(6)x+'.....+oo)log_(e)2] satisfies the quadratic equation x^(2)-9x+8=0 , find the value of (sinx-cosx)/(sinx+cosx) .

If f(x , y) satisfies the equation 1+4x-x^2=sqrt(9sec^2y+4cos e c^2y) then find the value of xa n dtan^2ydot

If f(x , y) satisfies the equation 1+4x-x^2=sqrt(9sec^2y+4cos e c^2y) then find the value of xtan^2ydot

If e^((cos^2x+cos^4+cos^x……)log3) satisfies the equation t^2-8t-9=0 then the value of tan x,(0ltxltpi/2) is (A) sqrt(3) (B) sqrt(2) (C) 1 (D) 1/sqrt(2)

If y(x) satisfies the differential equation y^(prime)-ytanx=2xs e c x and y(0)=0 , then

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

Solve cosx+cos3x-2cos2x=0

Statement -1:If e^{("sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2] satisfie the equation x^(2)-9x +8=0 , "then " (cosx)/(cosx + sinx) = (sqrt(3)-1)/(2), 0 lt x lt (pi)/(2) . Statement-2: The sum sin^(2) x + sin^(4)x + sin^(6) x + .... oo is equal to tan^(2)x

If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0ltxltpi, then x is equal to

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Section I - Solved Mcqs
  1. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  2. Let a(1),a(2),a(3),a(4)anda(5) be such that a(1),a(2)anda(3) are in A....

    Text Solution

    |

  3. If the expression exp {1+|cosx|+cos^(2)x+|cos^(3)x|+ . . . . oo)log(e...

    Text Solution

    |

  4. If the sides of a triangle are in GP and its largest angle is twice th...

    Text Solution

    |

  5. The first , second and the last terms of an A.P. are a ,b , c respecti...

    Text Solution

    |

  6. If the sides of a right angled triangle are in A.P then the sines of t...

    Text Solution

    |

  7. If the lengths of the sides of a triangle are in A.P. and the greatest...

    Text Solution

    |

  8. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  9. The sixth term of an AP is 2, and its common difference is greater tha...

    Text Solution

    |

  10. If a x^3+b x^2+c x+d is divisible by a x^2+c ,t h e na ,b ,c ,d are in...

    Text Solution

    |

  11. The sum of the series a-(a+d)+(a+2d)-(a+3d)+... up to (2n+1) terms is:...

    Text Solution

    |

  12. The sum of the series 1+2(1 +1/n)+ 3(1+1/n)^2+.... oo is given by

    Text Solution

    |

  13. The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+...

    Text Solution

    |

  14. The sum of n terms of the series 1/(sqrt1+sqrt3)+1/(sqrt3+sqrt5)+... i...

    Text Solution

    |

  15. If cos(x-y),cos x and cos(x+y) are in HP, then cos x sec ((y)/(2))=

    Text Solution

    |

  16. Let a1,a2 ,…. , a10 be in A.P. and h1,h2 …. h10 be in H.P. If a1=h1...

    Text Solution

    |

  17. Let S(1),S(2),"…." be squares such that for each n ge 1, the length o...

    Text Solution

    |

  18. Let a, b, c be in an AP and a^2, b^2, c^2 be in GP. If a < b < c and a...

    Text Solution

    |

  19. Let S(k) =sum( i =0) ^(oo) (1)/((k +1)^(t)), then sum (k =1) ^(n) kS(...

    Text Solution

    |

  20. If (1+x)(1+x^2)(1+x^4)(1+x^(128))=sum(r=0)^n x^r then n is equal to 25...

    Text Solution

    |