Home
Class 11
MATHS
If sum(r=1)^(n) T(r)=(n(n+1)(n+2)(n+3))/...

If `sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8)`, then
`lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=`

A

1

B

`(1)/(2)`

C

`(1)/(4)`

D

`(1)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{T_r} \] where it is given that: \[ \sum_{r=1}^{n} T_r = \frac{n(n+1)(n+2)(n+3)}{8} \] ### Step 1: Find the expression for \( T_r \) We know that: \[ T_r = S_r - S_{r-1} \] where \( S_n = \sum_{r=1}^{n} T_r \). Thus, we can express \( T_r \) as: \[ T_r = \frac{r(r+1)(r+2)(r+3)}{8} - \frac{(r-1)r(r+1)(r+2)}{8} \] ### Step 2: Simplify \( T_r \) Calculating \( T_r \): \[ T_r = \frac{1}{8} \left[ r(r+1)(r+2)(r+3) - (r-1)r(r+1)(r+2) \right] \] Expanding both terms: 1. \( r(r+1)(r+2)(r+3) = r^4 + 6r^3 + 11r^2 + 6r \) 2. \( (r-1)r(r+1)(r+2) = r^4 + 3r^3 - 2r^2 - 2r \) Subtracting the second from the first: \[ T_r = \frac{1}{8} \left[ (r^4 + 6r^3 + 11r^2 + 6r) - (r^4 + 3r^3 - 2r^2 - 2r) \right] \] This simplifies to: \[ T_r = \frac{1}{8} \left[ 3r^3 + 13r^2 + 8r \right] \] ### Step 3: Find \( \frac{1}{T_r} \) Now we need to find \( \frac{1}{T_r} \): \[ \frac{1}{T_r} = \frac{8}{3r^3 + 13r^2 + 8r} \] ### Step 4: Sum \( \frac{1}{T_r} \) from \( r=1 \) to \( n \) We need to compute: \[ \sum_{r=1}^{n} \frac{1}{T_r} = \sum_{r=1}^{n} \frac{8}{3r^3 + 13r^2 + 8r} \] ### Step 5: Analyze the limit as \( n \to \infty \) As \( n \to \infty \), we can approximate \( T_r \): \[ T_r \sim \frac{3r^3}{8} \quad \text{(for large } r\text{)} \] Thus, \[ \frac{1}{T_r} \sim \frac{8}{3r^3} \] ### Step 6: Evaluate the sum The sum can be approximated as: \[ \sum_{r=1}^{n} \frac{8}{3r^3} \sim \frac{8}{3} \cdot \int_{1}^{n} \frac{1}{x^3} \, dx \] Calculating the integral: \[ \int \frac{1}{x^3} \, dx = -\frac{1}{2x^2} \] Thus, \[ \int_{1}^{n} \frac{1}{x^3} \, dx = -\frac{1}{2n^2} + \frac{1}{2} \] So, \[ \sum_{r=1}^{n} \frac{8}{3r^3} \sim \frac{8}{3} \left( \frac{1}{2} - \frac{1}{2n^2} \right) \] ### Step 7: Take the limit Taking the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{T_r} = \frac{8}{3} \cdot \frac{1}{2} = \frac{4}{3} \] Thus, the final answer is: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{T_r} = \frac{4}{3} \]

To solve the problem, we need to find the limit: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{T_r} \] where it is given that: ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (3012)/(T_(r))=

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (2008)/(T_(r))=

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

If sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(n+2) for all nge1 , then lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r)) , is

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Section I - Solved Mcqs
  1. Find the sum of 2n terms of the series whose every even term is ' a ' ...

    Text Solution

    |

  2. The numbers 3^(2sin2alpha-1),14and3^(4-2sin2alpha) form first three te...

    Text Solution

    |

  3. If sum(r=1)^(n) T(r)=(n(n+1)(n+2)(n+3))/(8), then lim(ntooo) sum(r=...

    Text Solution

    |

  4. If sum(r=1)^(n) r(sqrt(10))/(3)sum(r=1)^(n)r^(2),sum(r=1)^(n) r^(3) ar...

    Text Solution

    |

  5. The number of terms common between series 1+2+4+8+… to 100 terms and 1...

    Text Solution

    |

  6. If a1, a2, a3, ,a(2n+1) are in A.P., then (a(2n+1)-a1)/(a(2n+1)+a1)+(...

    Text Solution

    |

  7. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  8. If (a(2)a(3))/(a(1)a(4))=(a(2)+a(3))/(a(1)+a(4))=3((a(2)-a(3))/(a(1)-a...

    Text Solution

    |

  9. If A, G & H are respectively the A.M., G.M. & H.M. of three positive n...

    Text Solution

    |

  10. If ar>0, r in N and a1.a2,....a(2n) are in A.P then (a1+a2)/(sqrta1+sq...

    Text Solution

    |

  11. If a(a), a (2), a (3),…., a(n) are in H.P. and f (k)=sum (r =1) ^(n) a...

    Text Solution

    |

  12. Let sum(r=1)^(n) r^(6)=f(n)," then "sum(n=1)^(n) (2r-1)^(6) is equal t...

    Text Solution

    |

  13. There are (4n+1) terms in a certain sequence of which the first (2n+1)...

    Text Solution

    |

  14. If 3 arithmetic means, 3 geometric means and 3 harmonic means are inse...

    Text Solution

    |

  15. If sum of x terms of a series is S(x)=(1)/((2x+3)(2x+1)) whose r^(th...

    Text Solution

    |

  16. If f(n)=sum(r=1)^(n) r^(4), then the value of sum(r=1)^(n) r(n-r)^(3) ...

    Text Solution

    |

  17. Number of G.P's having 5,9 and 11 as its three terms is equal to

    Text Solution

    |

  18. The largest term common to the sequence 1,11,21,31,….to 100 terms and ...

    Text Solution

    |

  19. If S(k) denotes the sum of first k terms of a G.P. Then, S(n),S(2n)-S(...

    Text Solution

    |

  20. Four different integers form an increasing A.P One of these numbers is...

    Text Solution

    |