Home
Class 11
MATHS
If sum(r=1)^(n) r(sqrt(10))/(3)sum(r=1)^...

If `sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3)` are in G.P., then the value of n, is

A

2

B

3

C

4

D

non-existent

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( n \) such that the expressions \[ \sum_{r=1}^{n} r, \quad \frac{\sqrt{10}}{3} \sum_{r=1}^{n} r^2, \quad \sum_{r=1}^{n} r^3 \] are in geometric progression (G.P.). ### Step-by-Step Solution: 1. **Understanding the condition for G.P.**: For three terms \( a, b, c \) to be in G.P., the condition is: \[ b^2 = ac \] Here, let: \[ a = \sum_{r=1}^{n} r, \quad b = \frac{\sqrt{10}}{3} \sum_{r=1}^{n} r^2, \quad c = \sum_{r=1}^{n} r^3 \] 2. **Calculating the sums**: We know the formulas for the sums: - The sum of the first \( n \) natural numbers: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \] - The sum of the squares of the first \( n \) natural numbers: \[ \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \] - The sum of the cubes of the first \( n \) natural numbers: \[ \sum_{r=1}^{n} r^3 = \left( \frac{n(n+1)}{2} \right)^2 \] 3. **Substituting the sums into the G.P. condition**: Substitute the sums into the G.P. condition: \[ \left( \frac{\sqrt{10}}{3} \cdot \frac{n(n+1)(2n+1)}{6} \right)^2 = \frac{n(n+1)}{2} \cdot \left( \frac{n(n+1)}{2} \right)^2 \] 4. **Simplifying the left side**: The left side becomes: \[ \frac{10}{9} \cdot \frac{n^2(n+1)^2(2n+1)^2}{36} \] 5. **Simplifying the right side**: The right side becomes: \[ \frac{n(n+1)}{2} \cdot \frac{n^2(n+1)^2}{4} = \frac{n^3(n+1)^3}{8} \] 6. **Setting the two sides equal**: Now we set the two sides equal: \[ \frac{10}{9} \cdot \frac{n^2(n+1)^2(2n+1)^2}{36} = \frac{n^3(n+1)^3}{8} \] 7. **Cross-multiplying to eliminate fractions**: Cross-multiplying gives: \[ 10 \cdot n^2(n+1)^2(2n+1)^2 = 36 \cdot \frac{9}{8} \cdot n^3(n+1)^3 \] 8. **Further simplification**: This simplifies to: \[ 80 \cdot n^2(n+1)^2(2n+1)^2 = 324 \cdot n^3(n+1)^3 \] 9. **Dividing both sides by \( n^2(n+1)^2 \)** (assuming \( n \neq 0 \)): \[ 80(2n+1)^2 = 324n(n+1) \] 10. **Expanding and rearranging**: Expanding gives: \[ 80(4n^2 + 4n + 1) = 324n^2 + 324n \] \[ 320n^2 + 320n + 80 = 324n^2 + 324n \] Rearranging leads to: \[ 4n^2 + 4n - 80 = 0 \] 11. **Solving the quadratic equation**: Dividing by 4: \[ n^2 + n - 20 = 0 \] Using the quadratic formula: \[ n = \frac{-1 \pm \sqrt{1 + 80}}{2} = \frac{-1 \pm 9}{2} \] This gives: \[ n = 4 \quad \text{or} \quad n = -5 \] Since \( n \) must be a positive integer, we have: \[ n = 4 \] ### Conclusion: Thus, the value of \( n \) is \( 4 \).

To solve the problem, we need to determine the value of \( n \) such that the expressions \[ \sum_{r=1}^{n} r, \quad \frac{\sqrt{10}}{3} \sum_{r=1}^{n} r^2, \quad \sum_{r=1}^{n} r^3 \] are in geometric progression (G.P.). ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

If sum_(r=1)^n r=55 , F i nd sum_(r=1)^n r^3dot

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Section I - Solved Mcqs
  1. The numbers 3^(2sin2alpha-1),14and3^(4-2sin2alpha) form first three te...

    Text Solution

    |

  2. If sum(r=1)^(n) T(r)=(n(n+1)(n+2)(n+3))/(8), then lim(ntooo) sum(r=...

    Text Solution

    |

  3. If sum(r=1)^(n) r(sqrt(10))/(3)sum(r=1)^(n)r^(2),sum(r=1)^(n) r^(3) ar...

    Text Solution

    |

  4. The number of terms common between series 1+2+4+8+… to 100 terms and 1...

    Text Solution

    |

  5. If a1, a2, a3, ,a(2n+1) are in A.P., then (a(2n+1)-a1)/(a(2n+1)+a1)+(...

    Text Solution

    |

  6. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  7. If (a(2)a(3))/(a(1)a(4))=(a(2)+a(3))/(a(1)+a(4))=3((a(2)-a(3))/(a(1)-a...

    Text Solution

    |

  8. If A, G & H are respectively the A.M., G.M. & H.M. of three positive n...

    Text Solution

    |

  9. If ar>0, r in N and a1.a2,....a(2n) are in A.P then (a1+a2)/(sqrta1+sq...

    Text Solution

    |

  10. If a(a), a (2), a (3),…., a(n) are in H.P. and f (k)=sum (r =1) ^(n) a...

    Text Solution

    |

  11. Let sum(r=1)^(n) r^(6)=f(n)," then "sum(n=1)^(n) (2r-1)^(6) is equal t...

    Text Solution

    |

  12. There are (4n+1) terms in a certain sequence of which the first (2n+1)...

    Text Solution

    |

  13. If 3 arithmetic means, 3 geometric means and 3 harmonic means are inse...

    Text Solution

    |

  14. If sum of x terms of a series is S(x)=(1)/((2x+3)(2x+1)) whose r^(th...

    Text Solution

    |

  15. If f(n)=sum(r=1)^(n) r^(4), then the value of sum(r=1)^(n) r(n-r)^(3) ...

    Text Solution

    |

  16. Number of G.P's having 5,9 and 11 as its three terms is equal to

    Text Solution

    |

  17. The largest term common to the sequence 1,11,21,31,….to 100 terms and ...

    Text Solution

    |

  18. If S(k) denotes the sum of first k terms of a G.P. Then, S(n),S(2n)-S(...

    Text Solution

    |

  19. Four different integers form an increasing A.P One of these numbers is...

    Text Solution

    |

  20. Let there be a GP whose first term is a and the common ratio is r. If ...

    Text Solution

    |