Home
Class 11
MATHS
If sum(k=1)^(n) (sum(m=1)^(k) m^(2))=an...

If `sum_(k=1)^(n) (sum_(m=1)^(k) m^(2))=an^(4)+bn^(3)+cn^(2)+dn+e`, then

A

`a=(1)/(12)`

B

`b=(1)/(6)`

C

`d=(1)/(4)`

D

e=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the double summation and express it in the form \( an^4 + bn^3 + cn^2 + dn + e \). ### Step-by-Step Solution: 1. **Understand the Double Summation**: We start with the expression: \[ \sum_{k=1}^{n} \left( \sum_{m=1}^{k} m^2 \right) \] The inner summation \( \sum_{m=1}^{k} m^2 \) can be computed using the formula for the sum of squares: \[ \sum_{m=1}^{k} m^2 = \frac{k(k+1)(2k+1)}{6} \] 2. **Substituting the Inner Sum**: Substitute the inner sum into the outer summation: \[ \sum_{k=1}^{n} \left( \frac{k(k+1)(2k+1)}{6} \right) \] This can be simplified to: \[ \frac{1}{6} \sum_{k=1}^{n} k(k+1)(2k+1) \] 3. **Expanding the Expression**: The expression \( k(k+1)(2k+1) \) can be expanded: \[ k(k+1)(2k+1) = 2k^3 + 3k^2 + k \] Thus, we can rewrite the summation as: \[ \frac{1}{6} \left( \sum_{k=1}^{n} (2k^3 + 3k^2 + k) \right) \] 4. **Calculating Each Summation**: We need to compute each of these summations: - For \( \sum_{k=1}^{n} k^3 \): \[ \sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 \] - For \( \sum_{k=1}^{n} k^2 \): \[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] - For \( \sum_{k=1}^{n} k \): \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \] 5. **Substituting Back**: Substitute these results back into the expression: \[ \frac{1}{6} \left( 2 \left( \frac{n(n+1)}{2} \right)^2 + 3 \cdot \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right) \] 6. **Simplifying the Expression**: After substituting and simplifying, we collect like terms: \[ = \frac{1}{6} \left( \frac{n^4 + 2n^3 + n^2}{2} + \frac{n^3 + 3n^2 + n}{2} + \frac{n(n+1)}{2} \right) \] This leads to: \[ = \frac{1}{12} (n^4 + 4n^3 + 7n^2 + 2n) \] 7. **Comparing Coefficients**: By comparing with \( an^4 + bn^3 + cn^2 + dn + e \): - \( a = \frac{1}{12} \) - \( b = \frac{4}{12} = \frac{1}{3} \) - \( c = \frac{7}{12} \) - \( d = \frac{2}{12} = \frac{1}{6} \) - \( e = 0 \) ### Final Result: Thus, we find: - \( a = \frac{1}{12} \) - \( b = \frac{1}{3} \) - \( c = \frac{7}{12} \) - \( d = \frac{1}{6} \) - \( e = 0 \)

To solve the given problem, we need to evaluate the double summation and express it in the form \( an^4 + bn^3 + cn^2 + dn + e \). ### Step-by-Step Solution: 1. **Understand the Double Summation**: We start with the expression: \[ \sum_{k=1}^{n} \left( \sum_{m=1}^{k} m^2 \right) ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

sum_(k=m)^n kC_r

If Sigma_(r=1)^(n) r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e then

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

Let z_(1),z_(2),z_(3),……z_(n) be the complex numbers such that |z_(1)|= |z_(2)| = …..=|z_(n)| = 1 . If z = (sum_(k=1)^(n)z_(k)) (sum_(k=1)^(n)(1)/(z_(k))) then prove that : z is a real number .

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

sum_(k=0)^(5)(-1)^(k)2k

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .

If the sum sum_(n=1)^10 sum_(m=1)^10 tan^(-1) (m/n) = k pi , find the value of k

sum_(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Section I - Solved Mcqs
  1. The sum of the products of 2n numbers pm1,pm2,pm3, . . . . ,n taking t...

    Text Solution

    |

  2. If n is an odd integer greater than or equal to 1, the value of =n^(3)...

    Text Solution

    |

  3. If sum(k=1)^(n) (sum(m=1)^(k) m^(2))=an^(4)+bn^(3)+cn^(2)+dn+e, then

    Text Solution

    |

  4. If a, b and c are three distinct real numbers in G.P. and a+b+c = xb, ...

    Text Solution

    |

  5. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  6. If a(1),a(2),a(3), . . .,a(n) are non-zero real numbers such that (a...

    Text Solution

    |

  7. Three successive terms of a G.P. will form the sides of a triangle if ...

    Text Solution

    |

  8. Find the sum of the following series to n terms 5+7+13+31+85+

    Text Solution

    |

  9. If three successive terms of as G.P. with commonratio rgt1 form the si...

    Text Solution

    |

  10. If the sum of an infinite G.P. is equal to the maximum value of f(x)=x...

    Text Solution

    |

  11. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  12. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  13. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. if (1+3+5+7+....(2p-1))+(1+3+5+...+(2q-1)) =1+3+5+...+(2r -1), then le...

    Text Solution

    |

  16. Let Sk ,k=1,2, ,100 , denotes thesum of the infinite geometric series ...

    Text Solution

    |

  17. Let a1, a2, a3, ,a(11) be real numbers satisfying a1=15 , 27-2a2>0 a ...

    Text Solution

    |

  18. Let a1, a2, a3, ,a(100) be an arithmetic progression with a1=3a n dsp...

    Text Solution

    |

  19. The sum of the series 1+4/3 +10/9+28/27+..... upto n terms is

    Text Solution

    |

  20. The sum of first 20 terms of the sequence 0.7 ,0.77 , 0.777 …., is

    Text Solution

    |