Home
Class 11
MATHS
If a(1),a(2),a(3), . . .,a(n) are non-ze...

If `a_(1),a_(2),a_(3), . . .,a_(n)` are non-zero real numbers such that
`(a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n)` are in

A

H.P.

B

G.P

C

A.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given inequality and determine if the sequence \( a_1, a_2, \ldots, a_n \) is in Arithmetic Progression (AP), Geometric Progression (GP), or Harmonic Progression (HP). ### Step-by-Step Solution: 1. **Understand the Given Condition**: The condition given is: \[ (a_1^2 + a_2^2 + \ldots + a_{n-1}^2)(a_2^2 + a_3^2 + \ldots + a_n^2) \leq (a_1 a_2 + a_2 a_3 + \ldots + a_{n-1} a_n)^2 \] This is a form of the Cauchy-Schwarz inequality. 2. **Test with \( n = 3 \)**: Let's take \( n = 3 \) and analyze the sequences for AP, GP, and HP. - **For Arithmetic Progression (AP)**: Let \( a_1 = 1, a_2 = 2, a_3 = 3 \). - Calculate \( LHS \): \[ LHS = (1^2 + 2^2)(2^2 + 3^2) = (1 + 4)(4 + 9) = 5 \times 13 = 65 \] - Calculate \( RHS \): \[ RHS = (1 \cdot 2 + 2 \cdot 3)^2 = (2 + 6)^2 = 8^2 = 64 \] - Since \( 65 > 64 \), the condition is not satisfied for AP. - **For Geometric Progression (GP)**: Let \( a_1 = 1, a_2 = 2, a_3 = 4 \). - Calculate \( LHS \): \[ LHS = (1^2 + 2^2)(2^2 + 4^2) = (1 + 4)(4 + 16) = 5 \times 20 = 100 \] - Calculate \( RHS \): \[ RHS = (1 \cdot 2 + 2 \cdot 4)^2 = (2 + 8)^2 = 10^2 = 100 \] - Since \( 100 = 100 \), the condition is satisfied for GP. - **For Harmonic Progression (HP)**: Let \( a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{3} \). - Calculate \( LHS \): \[ LHS = \left(1^2 + \left(\frac{1}{2}\right)^2\right)\left(\left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2\right) = \left(1 + \frac{1}{4}\right)\left(\frac{1}{4} + \frac{1}{9}\right) \] \[ = \frac{5}{4} \times \left(\frac{9 + 4}{36}\right) = \frac{5}{4} \times \frac{13}{36} = \frac{65}{144} \] - Calculate \( RHS \): \[ RHS = \left(1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{3}\right)^2 = \left(\frac{1}{2} + \frac{1}{6}\right)^2 = \left(\frac{3 + 1}{6}\right)^2 = \left(\frac{4}{6}\right)^2 = \left(\frac{2}{3}\right)^2 = \frac{4}{9} \] \[ = \frac{4 \cdot 16}{36} = \frac{64}{144} \] - Since \( \frac{65}{144} > \frac{64}{144} \), the condition is not satisfied for HP. 3. **Conclusion**: From the tests, we find that the only progression that satisfies the condition is Geometric Progression (GP). ### Final Answer: The numbers \( a_1, a_2, \ldots, a_n \) are in **Geometric Progression (GP)**.

To solve the problem, we need to analyze the given inequality and determine if the sequence \( a_1, a_2, \ldots, a_n \) is in Arithmetic Progression (AP), Geometric Progression (GP), or Harmonic Progression (HP). ### Step-by-Step Solution: 1. **Understand the Given Condition**: The condition given is: \[ (a_1^2 + a_2^2 + \ldots + a_{n-1}^2)(a_2^2 + a_3^2 + \ldots + a_n^2) \leq (a_1 a_2 + a_2 a_3 + \ldots + a_{n-1} a_n)^2 ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

If a_(1), a_(2),….,a_(n) are n(gt1) real numbers, then

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

a1,a2,a3.....an are in H.P. (a_(1))/(a_(2)+a_(3)+ . . .+a_(n)),(a_(2))/(a_(1)+a_(3)+ . . . +a_(n)),(a_(3))/(a_(1)+a_(2)+a_(4)+ . . .+a_(n)), . . .,(a_(n))/(a_(1)+a_(2)+ . . . +a_(n-1)) are in

If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)

Let a_(1),a_(2)…,a_(n) be a non-negative real numbers such that a_(1)+a_(2)+…+a_(n)=m and let S=sum_(iltj) a_(i)a_(j) , then

If A_(1), A_(2),..,A_(n) are any n events, then

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common ratio r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Section I - Solved Mcqs
  1. If a, b and c are three distinct real numbers in G.P. and a+b+c = xb, ...

    Text Solution

    |

  2. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  3. If a(1),a(2),a(3), . . .,a(n) are non-zero real numbers such that (a...

    Text Solution

    |

  4. Three successive terms of a G.P. will form the sides of a triangle if ...

    Text Solution

    |

  5. Find the sum of the following series to n terms 5+7+13+31+85+

    Text Solution

    |

  6. If three successive terms of as G.P. with commonratio rgt1 form the si...

    Text Solution

    |

  7. If the sum of an infinite G.P. is equal to the maximum value of f(x)=x...

    Text Solution

    |

  8. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  9. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  10. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. if (1+3+5+7+....(2p-1))+(1+3+5+...+(2q-1)) =1+3+5+...+(2r -1), then le...

    Text Solution

    |

  13. Let Sk ,k=1,2, ,100 , denotes thesum of the infinite geometric series ...

    Text Solution

    |

  14. Let a1, a2, a3, ,a(11) be real numbers satisfying a1=15 , 27-2a2>0 a ...

    Text Solution

    |

  15. Let a1, a2, a3, ,a(100) be an arithmetic progression with a1=3a n dsp...

    Text Solution

    |

  16. The sum of the series 1+4/3 +10/9+28/27+..... upto n terms is

    Text Solution

    |

  17. The sum of first 20 terms of the sequence 0.7 ,0.77 , 0.777 …., is

    Text Solution

    |

  18. Let Sn=underset(k=1)overset(4n)Sigma (-1)^((k(k+1))/2)k^2.Then Sn can ...

    Text Solution

    |

  19. If (10)^9+2(11)^2(10)^7 +….+10 (11)^9 = k(10)^9

    Text Solution

    |

  20. If (48)/(2.3)+(47)/(3.4)+(46)/(4.5)+ . . . +(2)/(48.49)+(1)/(49.50) ...

    Text Solution

    |