Home
Class 11
MATHS
If (48)/(2.3)+(47)/(3.4)+(46)/(4.5)+ . ....

If `(48)/(2.3)+(47)/(3.4)+(46)/(4.5)+ . . . +(2)/(48.49)+(1)/(49.50)`
`=(51)/(2)+k(1+(1)/(2)+(1)/(3)+ . . .+(1)/(50))`, then k equals

A

2

B

`-1`

C

`-(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum on the left-hand side and compare it to the expression on the right-hand side to find the value of \( k \). ### Step-by-step Solution: 1. **Understanding the Series**: The series we need to evaluate is: \[ S = \frac{48}{2 \cdot 3} + \frac{47}{3 \cdot 4} + \frac{46}{4 \cdot 5} + \ldots + \frac{2}{48 \cdot 49} + \frac{1}{49 \cdot 50} \] 2. **Identifying the General Term**: The general term of the series can be expressed as: \[ t_r = \frac{50 - r}{r(r + 1)} \] where \( r \) ranges from 2 to 49. 3. **Simplifying the General Term**: We can separate the general term: \[ t_r = \frac{50}{r(r + 1)} - \frac{r}{r(r + 1)} = \frac{50}{r(r + 1)} - \frac{1}{r + 1} \] 4. **Summing the Series**: Now we can write the sum \( S \) as: \[ S = \sum_{r=2}^{49} t_r = \sum_{r=2}^{49} \left( \frac{50}{r(r + 1)} - \frac{1}{r + 1} \right) \] 5. **Calculating the First Part**: The first part can be simplified using the method of partial fractions: \[ \sum_{r=2}^{49} \frac{50}{r(r + 1)} = 50 \left( \sum_{r=2}^{49} \left( \frac{1}{r} - \frac{1}{r + 1} \right) \right) \] This is a telescoping series, which simplifies to: \[ 50 \left( \frac{1}{2} - \frac{1}{50} \right) = 50 \left( \frac{25 - 1}{50} \right) = 24 \] 6. **Calculating the Second Part**: The second part is: \[ \sum_{r=2}^{49} \frac{1}{r + 1} = \sum_{s=3}^{50} \frac{1}{s} = H_{50} - H_{2} \] where \( H_n \) is the \( n \)-th harmonic number. 7. **Combining the Results**: Therefore, we have: \[ S = 24 - (H_{50} - H_{2}) \] 8. **Setting Up the Equation**: We know from the problem statement that: \[ S = \frac{51}{2} + k \left( 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{50} \right) \] This can be rewritten as: \[ S = \frac{51}{2} + k H_{50} \] 9. **Equating the Two Expressions**: Now we equate the two expressions for \( S \): \[ 24 - (H_{50} - H_{2}) = \frac{51}{2} + k H_{50} \] 10. **Solving for \( k \)**: Rearranging gives: \[ 24 + H_{2} - \frac{51}{2} = (k + 1) H_{50} \] Simplifying further: \[ \frac{48 - 51}{2} + H_{2} = (k + 1) H_{50} \] \[ -\frac{3}{2} + H_{2} = (k + 1) H_{50} \] 11. **Finding \( k \)**: Since \( H_{2} = 1 + \frac{1}{2} = \frac{3}{2} \): \[ 0 = (k + 1) H_{50} \] This implies \( k + 1 = 0 \) or \( k = -1 \). Thus, the value of \( k \) is: \[ \boxed{-1} \]

To solve the problem, we need to evaluate the sum on the left-hand side and compare it to the expression on the right-hand side to find the value of \( k \). ### Step-by-step Solution: 1. **Understanding the Series**: The series we need to evaluate is: \[ S = \frac{48}{2 \cdot 3} + \frac{47}{3 \cdot 4} + \frac{46}{4 \cdot 5} + \ldots + \frac{2}{48 \cdot 49} + \frac{1}{49 \cdot 50} ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,-3), (2,k)] and A^(2) - 4A + 10I = A , then k is equal to

If sin theta=(1)/(2) (a+(1)/(a)) and sin 3 theta=(k)/(2)(a^(3)+(1)/(a^(3))) , then k+6 is equal to :

The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125))) , is

1/((2 1/3))+1/((1 3/4)) is equal to (a) 7/(14) (b) (12)/(49) (c) 4 1/(12) (d) None of these

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

Statement-1: (C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2)) Statement-2: (C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx

Solve (a) 2/3 + 1/7 (b) 3/10 + 7/15 (c) 4/9 + 2/7 (d) 5/7 + 1/3 (e) 2/5 + 1/6 (f) 4/5 + 2/3 (g) (3/4) (1/3) (h) (5/6) (1/3) (1) 2/3 + 3/4 + 1/2 (1) 1/2 + 1/3 = 1/6 (k) (1) 1/3 + (3) 2/3 (1) (4) 2/3 +(3) 1/4 (m) ((16)/5))(7/5)

If the line (x-1)/(-3) = (y-2)/(2k) = (z-3)/( 2) and (x-1)/( 3k) = (y-5)/(1) = (6-z)/(5) are mutually perpendicular, then k is equal to

If the sum of the first 15 terms of the series ((3)/(4))^(3)+(1(1)/(2))^(3)+(2(1)/(4))^(3)+3^(3)+(3(3)/(4))^(3)+... is equal to 225k, then k is equal to

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Section I - Solved Mcqs
  1. Find the sum of the following series to n terms 5+7+13+31+85+

    Text Solution

    |

  2. If three successive terms of as G.P. with commonratio rgt1 form the si...

    Text Solution

    |

  3. If the sum of an infinite G.P. is equal to the maximum value of f(x)=x...

    Text Solution

    |

  4. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  5. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  6. Let V(r ) denotes the sum of the first r terms of an arithmetic progre...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. if (1+3+5+7+....(2p-1))+(1+3+5+...+(2q-1)) =1+3+5+...+(2r -1), then le...

    Text Solution

    |

  9. Let Sk ,k=1,2, ,100 , denotes thesum of the infinite geometric series ...

    Text Solution

    |

  10. Let a1, a2, a3, ,a(11) be real numbers satisfying a1=15 , 27-2a2>0 a ...

    Text Solution

    |

  11. Let a1, a2, a3, ,a(100) be an arithmetic progression with a1=3a n dsp...

    Text Solution

    |

  12. The sum of the series 1+4/3 +10/9+28/27+..... upto n terms is

    Text Solution

    |

  13. The sum of first 20 terms of the sequence 0.7 ,0.77 , 0.777 …., is

    Text Solution

    |

  14. Let Sn=underset(k=1)overset(4n)Sigma (-1)^((k(k+1))/2)k^2.Then Sn can ...

    Text Solution

    |

  15. If (10)^9+2(11)^2(10)^7 +….+10 (11)^9 = k(10)^9

    Text Solution

    |

  16. If (48)/(2.3)+(47)/(3.4)+(46)/(4.5)+ . . . +(2)/(48.49)+(1)/(49.50) ...

    Text Solution

    |

  17. Let the harmonic mean of two positive real numbers a and b be 4, If q ...

    Text Solution

    |

  18. If m is the A.M of two distict real numbers l and n (l, n gt 1)and G1,...

    Text Solution

    |

  19. Let bi gt 1 " for " i= 1,2 …., 101 .Suppose loge b1 loge b2 ….., loge...

    Text Solution

    |

  20. Let a,b, c in R. " If " f(x)=ax^(2)+bx+c is such that a+B+c=3 and f(x+...

    Text Solution

    |