Home
Class 11
MATHS
If x^(18)=y^(21)=z^(28), then 3,3 log(y)...

If `x^(18)=y^(21)=z^(28)`, then 3,3 `log_(y)x,3log_(z)y,7log_(x)z` are in

A

A.P.

B

G.P.

C

H.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine whether the values \(3\), \(3 \log_{y} x\), \(3 \log_{z} y\), and \(7 \log_{x} z\) are in Arithmetic Progression (AP), Geometric Progression (GP), or Harmonic Progression (HP). Given that \(x^{18} = y^{21} = z^{28}\), we can start by taking logarithms of all sides. ### Step 1: Take logarithms We can express the equality in logarithmic form: \[ \log(x^{18}) = \log(y^{21}) = \log(z^{28}) \] Using the property of logarithms, \( \log(a^b) = b \log(a) \), we can rewrite this as: \[ 18 \log x = 21 \log y = 28 \log z \] ### Step 2: Set equal to a common variable Let \( k = 18 \log x = 21 \log y = 28 \log z \). We can express \(\log x\), \(\log y\), and \(\log z\) in terms of \(k\): \[ \log x = \frac{k}{18}, \quad \log y = \frac{k}{21}, \quad \log z = \frac{k}{28} \] ### Step 3: Calculate \(3 \log_{y} x\) Using the change of base formula for logarithms: \[ \log_{y} x = \frac{\log x}{\log y} = \frac{\frac{k}{18}}{\frac{k}{21}} = \frac{21}{18} = \frac{7}{6} \] Thus, \[ 3 \log_{y} x = 3 \cdot \frac{7}{6} = \frac{21}{6} = \frac{7}{2} \] ### Step 4: Calculate \(3 \log_{z} y\) Similarly, \[ \log_{z} y = \frac{\log y}{\log z} = \frac{\frac{k}{21}}{\frac{k}{28}} = \frac{28}{21} = \frac{4}{3} \] Thus, \[ 3 \log_{z} y = 3 \cdot \frac{4}{3} = 4 \] ### Step 5: Calculate \(7 \log_{x} z\) Now, \[ \log_{x} z = \frac{\log z}{\log x} = \frac{\frac{k}{28}}{\frac{k}{18}} = \frac{18}{28} = \frac{9}{14} \] Thus, \[ 7 \log_{x} z = 7 \cdot \frac{9}{14} = \frac{63}{14} = \frac{9}{2} \] ### Step 6: List the terms Now we have: - \(a = 3\) - \(b = \frac{7}{2}\) - \(c = 4\) - \(d = \frac{9}{2}\) ### Step 7: Check for Arithmetic Progression To check if these values are in AP, we need to verify if: \[ 2b = a + c \quad \text{and} \quad 2c = b + d \] Calculating: 1. \(2b = 2 \cdot \frac{7}{2} = 7\) and \(a + c = 3 + 4 = 7\) (True) 2. \(2c = 2 \cdot 4 = 8\) and \(b + d = \frac{7}{2} + \frac{9}{2} = \frac{16}{2} = 8\) (True) Since both conditions are satisfied, we conclude that: \[ 3, 3 \log_{y} x, 3 \log_{z} y, 7 \log_{x} z \text{ are in Arithmetic Progression (AP)}. \] ### Final Answer: The values \(3\), \(3 \log_{y} x\), \(3 \log_{z} y\), and \(7 \log_{x} z\) are in AP. ---
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

. If 1, log_y x, log_z y, -15 log_x z are in AP, then

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If 1, log_(y)x, log_(z)y,-15 log_(x)z are in A.P. then the correct statement is :

The numbers 1/3, 1/3 log _(x) y, 1/3 log _(y) z, 1/7 log _(x) x are in H.P. If y= x ^® and z =x ^(s ), then 4 (r +s)=

The numbers 1/3, 1/3 log _(x) y, 1/3 log _(y) z, 1/7 log _(x) x are in H.P. If y= x ^r and z =x ^(s ), then 4 (r +s)=

Statement-1: If a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8) Statement-2: "log"_(b) a = (1)/("log"_(a)b)

If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log_(e)x) , (1)/(4x+log_(e)y) , (1)/(6x+log_(ez)z) are in

State, true or false : (i) If log_(10)x = a , then 10^(x) = a (ii) If x^(y) = z , then y = log_(z) x . (iii) log_(2) 8 = 3 and log_(8) 2 = (1)/(3) .

x^((log_x)log_a ylog_y z) is equal to

x^((log_x)log_a ylog_y z) is equal to

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Exercise
  1. If a,b,c are in H.P., then the value of ((1)/(b)+(1)/(c)-(1)/(a))((1...

    Text Solution

    |

  2. The 5th term of the series (10)/(9),(1)/(3)sqrt((20)/(3)),(2)/(3),… is

    Text Solution

    |

  3. If x^(18)=y^(21)=z^(28), then 3,3 log(y)x,3log(z)y,7log(x)z are in

    Text Solution

    |

  4. If d,e,f are G.P. and the two quadratic equations ax^(2)+2bx+c=0andd...

    Text Solution

    |

  5. The sum of n terms of the following series 1+(1+x)+(1+x+x^2)+.... will...

    Text Solution

    |

  6. For a sequence {a(n)}, a(1) = 2 and (a(n+1))/(a(n)) = 1/3, Then unders...

    Text Solution

    |

  7. In an arithmetic sequence a(1),a(2),a(3), . . . . .,a(n), Delta=|{:(...

    Text Solution

    |

  8. Prove that {:((666 ….6)^2+(888….8)=4444…..4),(" ""n digits " " ...

    Text Solution

    |

  9. Thr ciefficient of x^(n-2) in the polynomial (x-1)(x-2)(x-3)"…."(x-n),...

    Text Solution

    |

  10. The sum of the series 1^(2)+1+2^(2)+2+3^(2)+3+ . . . . .. +n^(2)+n, is

    Text Solution

    |

  11. If H1. H2...., Hn are n harmonic means between a and b(!=a), then the ...

    Text Solution

    |

  12. If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., ...

    Text Solution

    |

  13. If a ,b ,c are in G.P. and a-b ,c-a ,a n db-c are in H.P., then prove ...

    Text Solution

    |

  14. The cubes of the natural numbers are grouped as 1^(3),(2^(3),3^(3)),(4...

    Text Solution

    |

  15. If a\ a n d\ b are the roots of x^2-3x+p=0\ a n d\ c ,\ d are the root...

    Text Solution

    |

  16. Let the sum of n, 2n, 3n terms of an A.P. be S1,S2and S3, respectively...

    Text Solution

    |

  17. If a ,b ,c ,d ,e ,f are A.M.s between 2 and 12, then find the sum a+b+...

    Text Solution

    |

  18. If a, b, c are in G.P, then loga x, logb x, logc x are in

    Text Solution

    |

  19. If x,y,z are in H.P then the value of expression log(x+z)+log(x-2y+z)=

    Text Solution

    |

  20. If a,b,c,d are in H.P., then ab+bc+cd is equal to

    Text Solution

    |