Home
Class 11
MATHS
If x,y,z are in H.P then the value of ex...

If `x,y,z` are in H.P then the value of expression `log(x+z)+log(x-2y+z)=`

A

log (x-z)

B

2log(x-z)

C

3log(x-z)

D

4log(x-z)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \log(x+z) + \log(x-2y+z) \) given that \( x, y, z \) are in Harmonic Progression (H.P). ### Step-by-step Solution: 1. **Understanding H.P**: If \( x, y, z \) are in H.P, then their reciprocals \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \) are in Arithmetic Progression (A.P). This means: \[ \frac{1}{y} = \frac{1}{2} \left( \frac{1}{x} + \frac{1}{z} \right) \] 2. **Finding \( y \)**: From the A.P condition, we can derive: \[ 2 \cdot \frac{1}{y} = \frac{1}{x} + \frac{1}{z} \] Rearranging gives: \[ \frac{2}{y} = \frac{z + x}{xz} \] Thus, we can express \( y \) as: \[ y = \frac{2xz}{x + z} \] 3. **Substituting \( y \) into the expression**: Now we substitute \( y \) into the expression \( \log(x+z) + \log(x-2y+z) \): \[ \log(x+z) + \log\left(x - 2\left(\frac{2xz}{x+z}\right) + z\right) \] 4. **Simplifying the second logarithm**: The expression inside the second logarithm becomes: \[ x - \frac{4xz}{x+z} + z \] Finding a common denominator: \[ = \frac{(x+z)(x) - 4xz + (x+z)(z)}{x+z} = \frac{x^2 + xz + z^2 - 4xz}{x+z} = \frac{x^2 + z^2 - 3xz}{x+z} \] 5. **Combining the logarithms**: Now we can combine the logarithms using the property \( \log a + \log b = \log(ab) \): \[ \log\left((x+z) \cdot \frac{x^2 + z^2 - 3xz}{x+z}\right) = \log(x^2 + z^2 - 3xz) \] 6. **Recognizing a perfect square**: The expression \( x^2 + z^2 - 3xz \) can be rewritten as: \[ x^2 - 2xz + z^2 = (x - z)^2 \] 7. **Final logarithmic expression**: Thus, we have: \[ \log((x - z)^2) = 2\log|x - z| \] ### Final Answer: The value of the expression \( \log(x+z) + \log(x-2y+z) \) is: \[ 2\log|x - z| \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If x,y,z are positive integers, then the value of the expression (x+y)(y+z)(z+x) is

If x,y,z are in HP, then show that log(x+z)+log(x+z-2y)=2 log (x-z)

(i) The value of x + y + z is 15. If a, x, y, z, b are in AP while the value of (1)/(x) + (1)/(y) + (1)/(z) " is " (5)/(3) . If a, x, y, z b are in HP, then find a and b (ii) If x,y,z are in HP, then show that log (x +z) + log (x +z -2y) = 2 log ( x -z) .

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

The value of x + y + z is 15 if a, x, y, z, b are in A.P. while the value of (1)/(x) + (1)/(y) + (1)/(z) + (1)/(z) is (5)/(3) if a, x, y, z, b are in H.P. the value of a and b are

For positive numbers x, y and z, the numerical value of the determinant |{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}| is……

For positive numbers x ,\ y\ a n d\ z the numerical value of the determinant |1(log)_x y(log)_x z(log)_y x1(log)_y z(log)_z x(log)_z y1| is- a. 0 b. logx y z c. "log"(x+y+z) d. logx\ logy\ logz

If x gt 0 , y gt 0 , z gt 0 , the least value of x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y) is

If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log_(e)x) , (1)/(4x+log_(e)y) , (1)/(6x+log_(ez)z) are in

If x, y, z are in G.P. and a^x=b^y=c^z , then (a) logba=log_ac (b) log_cb =log_ac (c) log_ba=log_cb (d) none of these

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Exercise
  1. If a ,b ,c ,d ,e ,f are A.M.s between 2 and 12, then find the sum a+b+...

    Text Solution

    |

  2. If a, b, c are in G.P, then loga x, logb x, logc x are in

    Text Solution

    |

  3. If x,y,z are in H.P then the value of expression log(x+z)+log(x-2y+z)=

    Text Solution

    |

  4. If a,b,c,d are in H.P., then ab+bc+cd is equal to

    Text Solution

    |

  5. The sum of i-2-3i+4 up to 100 terms, where i=sqrt(-1) is 50(1-i) b. 2...

    Text Solution

    |

  6. (i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c)...

    Text Solution

    |

  7. If a,b,c are in H.P, then

    Text Solution

    |

  8. If a , b, c, be in A.P. , b, c,d in G.P. and c.d.e.in H.P., then prov...

    Text Solution

    |

  9. If (a+b)/(1-ab),b,(b+c)/(1-bc) are in AP, then a,(1)/(b),c are in

    Text Solution

    |

  10. If the sum of n terms of an A.P is cn (n-1)where c ne 0 then the sum o...

    Text Solution

    |

  11. Sum of the first p, q and r terms of an A.P are a, b and c, respectiv...

    Text Solution

    |

  12. If Sn=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...+n)/(1^3+2^3+3^3+...+n^3) T...

    Text Solution

    |

  13. If a,b and c are in A.P. a,x,b are in G.P. whereas b, y and c are also...

    Text Solution

    |

  14. If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

    Text Solution

    |

  15. If (1)/(a)+(1)/(c)+(1)/(a-b)+(1)/(c-b)=0, than prove that a,b,c are in...

    Text Solution

    |

  16. If arithmetic mean of two positive numbers is A, their geometric mean ...

    Text Solution

    |

  17. If (1-p)(1+3x+9x^2+27 x^3+81 x^4+243 x^5)=1-p^6,p!=1 , then the value ...

    Text Solution

    |

  18. If a, b, c are in G.P, then loga x, logb x, logc x are in

    Text Solution

    |

  19. If the sum of series 1+(3)/(x)+(9)/(x^(2))+(27)/(x^(3))+ . . .. " to "...

    Text Solution

    |

  20. If H be the H.M. between a and b, then the value of (H)/(a)+(H)/(b) is

    Text Solution

    |