Home
Class 11
MATHS
If Sn=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...

If `S_n=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...+n)/(1^3+2^3+3^3+...+n^3)` Then `S_n` is not greater than

A

`(1)/(2)`

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then lim_(n->oo) [S_n]

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

If S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!) then lim_(n rarr infty) S_(n) is equal to

If t_n=1/4(n+2)(n+3) for n=1, 2 ,3,.... then 1/t_1+1/t_2+1/t_3+....+1/(t_(2003))=

Let H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n) , then the sum to n terms of the series (1^(2))/(1^(3))+(1^(2)+2^(2))/(1^(3)+2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . , is

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(3) +3^(3) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

Evaluate lim _( x to oo) ((1^(2) )/(n ^(3) +1 ^(3))+(2 ^(2))/(n ^(3) +2 ^(3)) + (3 ^(2))/(n ^(3)+ 3 ^(3))+ .... + (4)/(9n)).

Prove that: 1^2+2^2+3^2.....+n^2>(n^3)/3, n in N

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Exercise
  1. If the sum of n terms of an A.P is cn (n-1)where c ne 0 then the sum o...

    Text Solution

    |

  2. Sum of the first p, q and r terms of an A.P are a, b and c, respectiv...

    Text Solution

    |

  3. If Sn=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...+n)/(1^3+2^3+3^3+...+n^3) T...

    Text Solution

    |

  4. If a,b and c are in A.P. a,x,b are in G.P. whereas b, y and c are also...

    Text Solution

    |

  5. If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

    Text Solution

    |

  6. If (1)/(a)+(1)/(c)+(1)/(a-b)+(1)/(c-b)=0, than prove that a,b,c are in...

    Text Solution

    |

  7. If arithmetic mean of two positive numbers is A, their geometric mean ...

    Text Solution

    |

  8. If (1-p)(1+3x+9x^2+27 x^3+81 x^4+243 x^5)=1-p^6,p!=1 , then the value ...

    Text Solution

    |

  9. If a, b, c are in G.P, then loga x, logb x, logc x are in

    Text Solution

    |

  10. If the sum of series 1+(3)/(x)+(9)/(x^(2))+(27)/(x^(3))+ . . .. " to "...

    Text Solution

    |

  11. If H be the H.M. between a and b, then the value of (H)/(a)+(H)/(b) is

    Text Solution

    |

  12. The sum of n terms of two arithmetic progressions are in the ratio 2n+...

    Text Solution

    |

  13. If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)...

    Text Solution

    |

  14. Show that X^((1)/(2))*X^((1)/(4))*X^((1)/(8))... Upto oo = X

    Text Solution

    |

  15. If a,b,c be in arithmetic progession, then the value of (a+2b-c) (2b+c...

    Text Solution

    |

  16. If a, b, c are distinct positive real numbers in G.P and logca, logbc,...

    Text Solution

    |

  17. If lta(n)gtandltb(n)gt be two sequences given by a(n)=(x)^((1)/(2^(n))...

    Text Solution

    |

  18. The sum of the squares of three distinct real numbers which are in G...

    Text Solution

    |

  19. If there be n quantities in G.P., whose common ratio is r and S(m) den...

    Text Solution

    |

  20. The value of sum(r=1)^(n)log((a^(r))/(b^(r-1))), is

    Text Solution

    |