Home
Class 11
MATHS
If S(1),S(2)andS(3) denote the sum of fi...

If `S_(1),S_(2)andS_(3)` denote the sum of first `n_(1)n_(2)andn_(3)` terms respectively of an A.P., then
`(S_(1))/(n_(1))(n_(2)-n_(3))+(S_(2))/(n_(2))+(n_(3)-n_(1))+(S_(3))/(n_(3))(n_(1)-n_(2))`=

A

0

B

1

C

`S_(1)S_(2)S_(3)`

D

`n_(1)n_(2)n_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of the expression: \[ \frac{S_1}{n_1(n_2 - n_3)} + \frac{S_2}{n_2(n_3 - n_1)} + \frac{S_3}{n_3(n_1 - n_2)} \] where \(S_1\), \(S_2\), and \(S_3\) are the sums of the first \(n_1\), \(n_2\), and \(n_3\) terms of an arithmetic progression (A.P.). ### Step 1: Find the sums \(S_1\), \(S_2\), and \(S_3\) The formula for the sum of the first \(n\) terms of an A.P. is given by: \[ S_n = \frac{n}{2} \left(2a + (n - 1)d\right) \] Using this formula, we can express \(S_1\), \(S_2\), and \(S_3\): \[ S_1 = \frac{n_1}{2} \left(2a + (n_1 - 1)d\right) \] \[ S_2 = \frac{n_2}{2} \left(2a + (n_2 - 1)d\right) \] \[ S_3 = \frac{n_3}{2} \left(2a + (n_3 - 1)d\right) \] ### Step 2: Substitute \(S_1\), \(S_2\), and \(S_3\) into the expression Now, substituting these values into the expression: \[ \frac{S_1}{n_1(n_2 - n_3)} = \frac{\frac{n_1}{2} \left(2a + (n_1 - 1)d\right)}{n_1(n_2 - n_3)} = \frac{1}{2(n_2 - n_3)} \left(2a + (n_1 - 1)d\right) \] \[ \frac{S_2}{n_2(n_3 - n_1)} = \frac{\frac{n_2}{2} \left(2a + (n_2 - 1)d\right)}{n_2(n_3 - n_1)} = \frac{1}{2(n_3 - n_1)} \left(2a + (n_2 - 1)d\right) \] \[ \frac{S_3}{n_3(n_1 - n_2)} = \frac{\frac{n_3}{2} \left(2a + (n_3 - 1)d\right)}{n_3(n_1 - n_2)} = \frac{1}{2(n_1 - n_2)} \left(2a + (n_3 - 1)d\right) \] ### Step 3: Combine the fractions Now, we can combine these fractions: \[ P = \frac{1}{2(n_2 - n_3)} \left(2a + (n_1 - 1)d\right) + \frac{1}{2(n_3 - n_1)} \left(2a + (n_2 - 1)d\right) + \frac{1}{2(n_1 - n_2)} \left(2a + (n_3 - 1)d\right) \] ### Step 4: Simplify the expression To simplify, we can multiply each term by the common denominator \(2(n_2 - n_3)(n_3 - n_1)(n_1 - n_2)\): The terms will cancel out due to the symmetry in the expression, leading to: \[ P = 0 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If S_1 ,S_2 and S_3 denote the sum of first n_1,n_2 and n_3 terms respectively of an A.P. Then S_1/n_1 (n_2-n_3) + S_2/n_2 (n_3-n_1)+S_3/n_3 (n_1-n_2) equals :

If s_(1),s_(2)and s_(3) are the sum of first n , 2n, 3n terms respectively of an arithmetical progression , then show that s_(3)=3 (s_(2)-s_(1))

If S_(1),S_(2),S_(3) be respectively the sum of n, 2n and 3n terms of a GP, then (S_(1)(S_(3)-S_(2)))/((S_(2)-S_(1))^(2)) is equal to

Let S_n denote the sum of first n terms of an A.P. If S_(2n)=3S_n , then find the ratio S_(3n)//S_ndot

Let S_n denote the sum of first n terms of an A.P. If S_(2n)=3S_n , then find the ratio S_(3n)//S_ndot

Let S_n denote the sum of the first n tem of an A.P. If S_(2n)=3S_n then prove that (S_(3n))/(S_n) =6.

Let S_n denote the sum of first n terms of an A.P. and S_2n = 3S_n then ratio of S_3n : S_n

If S_(n) denotes the sum of first n terms of an AP, then prove that S_(12)=3(S_(8)-S_(4)).

Let the sum of n, 2n, 3n terms of an A.P. be S_(1), S_(2) and S_(3) respectively. Show that S_(3) = 3(S_(2) - S_(1)) .

If S_1,S_2 and S_3 be respectively the sum of n, 2n and 3n terms of a G.P., prove that S_1(S_2+S_3)=(S_1)^2+(S_2)^2

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Exercise
  1. The n^(th) term of the sequence 4,14,30,52,80,114, . . . ., is

    Text Solution

    |

  2. If |x|<1a n d|y|<1, find the sum of infinity of the following series: ...

    Text Solution

    |

  3. If S(1),S(2)andS(3) denote the sum of first n(1)n(2)andn(3) terms resp...

    Text Solution

    |

  4. If |a| < 1 and |b| < 1, then the sum of the series a(a+b)+a^2(a^2+b^2)...

    Text Solution

    |

  5. If log(x)a, a^(x//2), log(b)X are in G.P. then x is equal to

    Text Solution

    |

  6. If a ,b ,c ,d are in G.P., then prove that (a^3+b^3)^(-1),(b^3+c^3)^(-...

    Text Solution

    |

  7. If 0ltxlt(pi)/(2) exp [(sin^(2)x+sin^(4)x+sin^(6)x+'.....+oo)log(e)2] ...

    Text Solution

    |

  8. The value of 0.2

    Text Solution

    |

  9. If the sum of an infinitely decreasing G.P. is 3, and the sum of the s...

    Text Solution

    |

  10. If 1/(1^2)+1/(2^2)+1/(3^2)+..." to "oo = pi^2/6, " then " 1/1^2+1/3^2+...

    Text Solution

    |

  11. The value of [(0.16)^(log(2.5)(1/3+1/3^2+1/3^3+….+oo))]^(1/2) is a) 1 ...

    Text Solution

    |

  12. If the sum of the first n terms of series be 5n^(2)+2n, then its secon...

    Text Solution

    |

  13. If x,|x+1|,|x-1| are first three terms of an A.P., then the sum of its...

    Text Solution

    |

  14. If a1,a2,a3,... are in A.P. and ai>0 for each i, then sum(i=1)^n n/(a(...

    Text Solution

    |

  15. If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a...

    Text Solution

    |

  16. If,a,b and c are in H.P then the value of (ac+ab-bc)(ab+bc-ac)/(abc...

    Text Solution

    |

  17. If AM of the number 5^(1+x) and 5^(1-x) is 13 then the set of possible...

    Text Solution

    |

  18. If a,b,c are in A.P then a+1/(bc), b+1/(ca), c+1/(ab) are in

    Text Solution

    |

  19. The coefficient of x^(49) in the product (x-1)(x-3)(x-99)i s a. -99^...

    Text Solution

    |

  20. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |