Home
Class 11
MATHS
If AM of the number 5^(1+x) and 5^(1-x) ...

If AM of the number `5^(1+x) and 5^(1-x)` is 13 then the set of possible real values of x is -

A

`5,(1)/(5)`

B

{-1,1}

C

{0,1}

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the set of possible real values of \( x \) given that the arithmetic mean (AM) of the numbers \( 5^{(1+x)} \) and \( 5^{(1-x)} \) is equal to 13. ### Step 1: Write the expression for the AM The arithmetic mean of two numbers \( a \) and \( b \) is given by: \[ AM = \frac{a + b}{2} \] In our case, we have: \[ AM = \frac{5^{(1+x)} + 5^{(1-x)}}{2} = 13 \] ### Step 2: Set up the equation From the AM expression, we can set up the equation: \[ \frac{5^{(1+x)} + 5^{(1-x)}}{2} = 13 \] Multiplying both sides by 2 gives: \[ 5^{(1+x)} + 5^{(1-x)} = 26 \] ### Step 3: Simplify the expression Using the property of exponents, we can rewrite \( 5^{(1+x)} \) and \( 5^{(1-x)} \): \[ 5^{(1+x)} = 5 \cdot 5^x \quad \text{and} \quad 5^{(1-x)} = 5 \cdot 5^{-x} \] Substituting these into the equation gives: \[ 5 \cdot 5^x + 5 \cdot 5^{-x} = 26 \] Dividing the entire equation by 5 results in: \[ 5^x + 5^{-x} = \frac{26}{5} \] ### Step 4: Let \( y = 5^x \) Let \( y = 5^x \). Then \( 5^{-x} = \frac{1}{y} \). Substituting these into the equation gives: \[ y + \frac{1}{y} = \frac{26}{5} \] ### Step 5: Multiply through by \( y \) To eliminate the fraction, multiply through by \( y \): \[ y^2 + 1 = \frac{26}{5}y \] Rearranging gives: \[ 5y^2 - 26y + 5 = 0 \] ### Step 6: Solve the quadratic equation Now we will solve the quadratic equation \( 5y^2 - 26y + 5 = 0 \) using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 5 \), \( b = -26 \), and \( c = 5 \): \[ y = \frac{26 \pm \sqrt{(-26)^2 - 4 \cdot 5 \cdot 5}}{2 \cdot 5} \] Calculating the discriminant: \[ (-26)^2 - 4 \cdot 5 \cdot 5 = 676 - 100 = 576 \] Thus: \[ y = \frac{26 \pm \sqrt{576}}{10} = \frac{26 \pm 24}{10} \] Calculating the two possible values for \( y \): 1. \( y = \frac{50}{10} = 5 \) 2. \( y = \frac{2}{10} = \frac{1}{5} \) ### Step 7: Find \( x \) from \( y \) Recall that \( y = 5^x \): 1. If \( y = 5 \), then \( 5^x = 5 \) implies \( x = 1 \). 2. If \( y = \frac{1}{5} \), then \( 5^x = \frac{1}{5} \) implies \( x = -1 \). ### Conclusion The set of possible real values of \( x \) is: \[ \{ -1, 1 \} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If the equation (x/(1+x^2))^2+a(x/(1+x^2))+3=0 has exactly two real roots which are distinct, then the set of possible real values of a is ((-13)/2,0) (b) (oo,-(13)/2) ((-13)/2,(13)/2) (d) ((13)/2,oo)

If the equation (x/(1+x^2))^2+a(x/(1+x^2))+3=0 has exactly two real roots which are distinct, then the set of possible real values of a is ((-13)/2,0) (b) (oo,-(13)/2) ((-13)/2,(13)/2) (d) ((13)/2,oo)

If lim_(x->a) (x^5-a^5)/(x-a)=5 , then find the sum of the possible real values of a.

If lim_(x->a) (x^5-a^5)/(x-a)=5 , then find the sum of the possible real values of a.

If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)]) is real, then the set of all possible values of x is.........

If x,y are positive real numbers and 3x+4y=5 , then the lagest possible value of 16x^(2)y^(3) is

Let f(x)=a^x-xlna , a>1. Then the complete set of real values of x for which f'(x)>0 is

Find the sign of 6x^(2)-5x+1 for all real value of x.

If the difference between the roots of the equation x^2+a x+1=0 is less then sqrt(5) , then find the set of possible value of adot

If the difference between the roots of the equation x^2+a x+1=0 is less then sqrt(5) , then find the set of possible value of adot

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Exercise
  1. If |a| < 1 and |b| < 1, then the sum of the series a(a+b)+a^2(a^2+b^2)...

    Text Solution

    |

  2. If log(x)a, a^(x//2), log(b)X are in G.P. then x is equal to

    Text Solution

    |

  3. If a ,b ,c ,d are in G.P., then prove that (a^3+b^3)^(-1),(b^3+c^3)^(-...

    Text Solution

    |

  4. If 0ltxlt(pi)/(2) exp [(sin^(2)x+sin^(4)x+sin^(6)x+'.....+oo)log(e)2] ...

    Text Solution

    |

  5. The value of 0.2

    Text Solution

    |

  6. If the sum of an infinitely decreasing G.P. is 3, and the sum of the s...

    Text Solution

    |

  7. If 1/(1^2)+1/(2^2)+1/(3^2)+..." to "oo = pi^2/6, " then " 1/1^2+1/3^2+...

    Text Solution

    |

  8. The value of [(0.16)^(log(2.5)(1/3+1/3^2+1/3^3+….+oo))]^(1/2) is a) 1 ...

    Text Solution

    |

  9. If the sum of the first n terms of series be 5n^(2)+2n, then its secon...

    Text Solution

    |

  10. If x,|x+1|,|x-1| are first three terms of an A.P., then the sum of its...

    Text Solution

    |

  11. If a1,a2,a3,... are in A.P. and ai>0 for each i, then sum(i=1)^n n/(a(...

    Text Solution

    |

  12. If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a...

    Text Solution

    |

  13. If,a,b and c are in H.P then the value of (ac+ab-bc)(ab+bc-ac)/(abc...

    Text Solution

    |

  14. If AM of the number 5^(1+x) and 5^(1-x) is 13 then the set of possible...

    Text Solution

    |

  15. If a,b,c are in A.P then a+1/(bc), b+1/(ca), c+1/(ab) are in

    Text Solution

    |

  16. The coefficient of x^(49) in the product (x-1)(x-3)(x-99)i s a. -99^...

    Text Solution

    |

  17. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  18. If S(n)=sum(r=1)^(n) a(r)=(1)/(6)n(2n^(2)+9n+13), then sum(r=1)^(n)sqr...

    Text Solution

    |

  19. If sum(r=1)^(n) a(r)=(1)/(6)n(n+1)(n+2) for all nge1, then lim(ntooo) ...

    Text Solution

    |

  20. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |