Home
Class 11
MATHS
If sum(r=1)^(n) a(r)=(1)/(6)n(n+1)(n+2) ...

If `sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(n+2)` for all `nge1`, then `lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r))`, is

A

2

B

3

C

`3//2`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit as \( n \) approaches infinity of the summation \( \sum_{r=1}^{n} \frac{1}{a_r} \) given that \( \sum_{r=1}^{n} a_r = \frac{1}{6} n(n+1)(n+2) \). ### Step 1: Find the nth term \( a_n \) We know that: \[ \sum_{r=1}^{n} a_r = \frac{1}{6} n(n+1)(n+2) \] To find \( a_n \), we can express it as: \[ a_n = \sum_{r=1}^{n} a_r - \sum_{r=1}^{n-1} a_r \] This means we need to compute \( \sum_{r=1}^{n-1} a_r \): \[ \sum_{r=1}^{n-1} a_r = \frac{1}{6} (n-1)n(n+1) \] Now, substituting these into the equation for \( a_n \): \[ a_n = \frac{1}{6} n(n+1)(n+2) - \frac{1}{6} (n-1)n(n+1) \] ### Step 2: Simplify \( a_n \) Now, we will simplify \( a_n \): \[ a_n = \frac{1}{6} \left[ n(n+1)(n+2) - (n-1)n(n+1) \right] \] Factoring out \( n(n+1) \): \[ = \frac{1}{6} n(n+1) \left[ (n+2) - (n-1) \right] \] \[ = \frac{1}{6} n(n+1) \left[ 3 \right] \] Thus, \[ a_n = \frac{1}{2} n(n+1) \] ### Step 3: Find \( \sum_{r=1}^{n} \frac{1}{a_r} \) Now we need to compute: \[ \sum_{r=1}^{n} \frac{1}{a_r} = \sum_{r=1}^{n} \frac{2}{r(r+1)} \] This can be simplified using partial fractions: \[ \frac{2}{r(r+1)} = 2 \left( \frac{1}{r} - \frac{1}{r+1} \right) \] ### Step 4: Evaluate the summation Thus, \[ \sum_{r=1}^{n} \frac{1}{a_r} = 2 \sum_{r=1}^{n} \left( \frac{1}{r} - \frac{1}{r+1} \right) \] This is a telescoping series: \[ = 2 \left( 1 - \frac{1}{n+1} \right) = 2 \left( \frac{n}{n+1} \right) \] ### Step 5: Take the limit as \( n \to \infty \) Now we take the limit: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{a_r} = \lim_{n \to \infty} 2 \left( \frac{n}{n+1} \right) = 2 \cdot 1 = 2 \] ### Final Answer Thus, the limit is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|59 Videos
  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (3012)/(T_(r))=

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (2008)/(T_(r))=

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Exercise
  1. If |a| < 1 and |b| < 1, then the sum of the series a(a+b)+a^2(a^2+b^2)...

    Text Solution

    |

  2. If log(x)a, a^(x//2), log(b)X are in G.P. then x is equal to

    Text Solution

    |

  3. If a ,b ,c ,d are in G.P., then prove that (a^3+b^3)^(-1),(b^3+c^3)^(-...

    Text Solution

    |

  4. If 0ltxlt(pi)/(2) exp [(sin^(2)x+sin^(4)x+sin^(6)x+'.....+oo)log(e)2] ...

    Text Solution

    |

  5. The value of 0.2

    Text Solution

    |

  6. If the sum of an infinitely decreasing G.P. is 3, and the sum of the s...

    Text Solution

    |

  7. If 1/(1^2)+1/(2^2)+1/(3^2)+..." to "oo = pi^2/6, " then " 1/1^2+1/3^2+...

    Text Solution

    |

  8. The value of [(0.16)^(log(2.5)(1/3+1/3^2+1/3^3+….+oo))]^(1/2) is a) 1 ...

    Text Solution

    |

  9. If the sum of the first n terms of series be 5n^(2)+2n, then its secon...

    Text Solution

    |

  10. If x,|x+1|,|x-1| are first three terms of an A.P., then the sum of its...

    Text Solution

    |

  11. If a1,a2,a3,... are in A.P. and ai>0 for each i, then sum(i=1)^n n/(a(...

    Text Solution

    |

  12. If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a...

    Text Solution

    |

  13. If,a,b and c are in H.P then the value of (ac+ab-bc)(ab+bc-ac)/(abc...

    Text Solution

    |

  14. If AM of the number 5^(1+x) and 5^(1-x) is 13 then the set of possible...

    Text Solution

    |

  15. If a,b,c are in A.P then a+1/(bc), b+1/(ca), c+1/(ab) are in

    Text Solution

    |

  16. The coefficient of x^(49) in the product (x-1)(x-3)(x-99)i s a. -99^...

    Text Solution

    |

  17. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  18. If S(n)=sum(r=1)^(n) a(r)=(1)/(6)n(2n^(2)+9n+13), then sum(r=1)^(n)sqr...

    Text Solution

    |

  19. If sum(r=1)^(n) a(r)=(1)/(6)n(n+1)(n+2) for all nge1, then lim(ntooo) ...

    Text Solution

    |

  20. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |