Home
Class 11
MATHS
If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca),...

If `4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca)," where "a,b,c` are non-zero numbers, then a,b,c are in

A

A.P.

B

G.P.

C

H.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4a^2 + 9b^2 + 16c^2 = 2(3ab + 6bc + 4ca) \) and determine the relationship between \( a, b, c \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 4a^2 + 9b^2 + 16c^2 = 2(3ab + 6bc + 4ca) \] Expanding the right-hand side: \[ 4a^2 + 9b^2 + 16c^2 = 6ab + 12bc + 8ca \] ### Step 2: Move all terms to one side Rearranging the equation gives us: \[ 4a^2 + 9b^2 + 16c^2 - 6ab - 12bc - 8ca = 0 \] ### Step 3: Group terms for completing the square We can group the terms to complete the square: \[ (4a^2 - 6ab + 9b^2) + (16c^2 - 12bc - 8ca) = 0 \] ### Step 4: Complete the square for each group 1. For \( 4a^2 - 6ab + 9b^2 \): \[ 4a^2 - 6ab + 9b^2 = (2a - 3b)^2 \] 2. For \( 16c^2 - 12bc - 8ca \): \[ 16c^2 - 12bc - 8ca = (4c - 3b)^2 + (4c - 2a)^2 \] Thus, the equation becomes: \[ (2a - 3b)^2 + (3b - 4c)^2 + (4c - 2a)^2 = 0 \] ### Step 5: Analyze the equation The sum of squares equals zero only when each individual square is zero: 1. \( 2a - 3b = 0 \) (i.e., \( 2a = 3b \)) 2. \( 3b - 4c = 0 \) (i.e., \( 3b = 4c \)) 3. \( 4c - 2a = 0 \) (i.e., \( 4c = 2a \)) ### Step 6: Solve for relationships From \( 2a = 3b \), we can express \( a \) in terms of \( b \): \[ a = \frac{3}{2}b \] From \( 3b = 4c \), we can express \( b \) in terms of \( c \): \[ b = \frac{4}{3}c \] Substituting \( b \) into the expression for \( a \): \[ a = \frac{3}{2} \left(\frac{4}{3}c\right) = 2c \] ### Step 7: Express \( a, b, c \) in terms of a common variable Let \( c = x \): - Then \( a = 2x \) - And \( b = \frac{4}{3}x \) ### Step 8: Check the relationship We have \( a, b, c \) as: - \( a = 2x \) - \( b = \frac{4}{3}x \) - \( c = x \) ### Step 9: Determine the type of progression The ratios of \( a, b, c \) are: - \( \frac{a}{b} = \frac{2x}{\frac{4}{3}x} = \frac{3}{2} \) - \( \frac{b}{c} = \frac{\frac{4}{3}x}{x} = \frac{4}{3} \) Since \( 2, \frac{4}{3}, 3 \) are in arithmetic progression, we can conclude that \( a, b, c \) are in harmonic progression (HP). ### Final Conclusion Thus, the numbers \( a, b, c \) are in HP. ---
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos
  • SETS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca) , where a,b,c are non-zero real numbers, then a,b,c are in GP. Statement 2 If (a_(1)-a_(2))^(2)+(a_(2)-a_(3))^(2)+(a_(3)-a_(1))^(2)=0 , then a_(1)=a_(2)=a_(3),AA a_(1),a_(2),a_(3) in R .

Factorise : 4a^(2)+9b^(2)+16c^(2)+12ab-24bc-16ca

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

If a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9 , find: ab + bc + ca

If a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77 , find: ab- bc+ ca

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

OBJECTIVE RD SHARMA ENGLISH-SEQUENCES AND SERIES-Chapter Test
  1. If in an AP, t1 = log10 a, t(n+1) = log10 b and t(2n+1) = log10 c then...

    Text Solution

    |

  2. Find the sum of the series: 1^2-2^2+3^2-4^2+.....-2008^2+2009^2.

    Text Solution

    |

  3. If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca)," where "a,b,c are non-zero nu...

    Text Solution

    |

  4. If Sn denotes the sum of n terms of an A.P. whose common difference is...

    Text Solution

    |

  5. The sides of a right angled triangle are in A.P., then they are in the...

    Text Solution

    |

  6. Find the sum of all the 11 terms of an AP whose middle most term is 30...

    Text Solution

    |

  7. The maximum sum of the series 20+19 1/3+18 2/3+ is 310 b. 300 c. 0320 ...

    Text Solution

    |

  8. If three numbers are in G.P., then the numbers obtained by adding the ...

    Text Solution

    |

  9. If p ,q ,r are in A.P., show that the pth, qth and rth terms of any G....

    Text Solution

    |

  10. Let a,b,c be three positive prime number. The progrrssion in which sqr...

    Text Solution

    |

  11. If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a...

    Text Solution

    |

  12. If three numbers are in H.P., then the numbers obtained by subtracting...

    Text Solution

    |

  13. The first three of four given numbers are in G.P. and their last three...

    Text Solution

    |

  14. In a G.P. of positive terms if any terms is equal to the sum of next ...

    Text Solution

    |

  15. If a,b,c are in H.P and ab+bc+ca=15 then ca=

    Text Solution

    |

  16. If sum(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8), then sum(r=1)^(oo) (1)/...

    Text Solution

    |

  17. It is given that 1/1^4 + 1/2^4 +1/3^4 … to oo= pi^4/90 , then 1/1^4...

    Text Solution

    |

  18. The minimum number of terms from the beginning of the series 20+22(2)/...

    Text Solution

    |

  19. The sum of the series 1-3+5-7+9-11+ . . . . To n terms is

    Text Solution

    |

  20. If three positive unequal numbers a, b, c are in H.P., then

    Text Solution

    |